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Abstract

The Black-Scholes model is commonly used to track the price of European options

with respect to maturity in many financial markets. This model degenerates into

a partial differential equation that relates the European-style option price to the

underlying price and time of expiry. Black-Scholes assumes that underlying prices

satisfy a geometric Brownian motion.

After the U.S. stock market crash of 1987, this assumption becomes inaccurate as

it fails to represent the behavior of S&P 500 European vanilla option prices. Specifi-

cally, under the measure of moneyness, the volatility smirk does not flatten out and

the resulting conditional return distribution does not converge to normality. Recent

academic literature have proposed readjusted financial models to account for the

shortcomings of Black-Scholes, none which successfully have combined infinite return

moments and finite price moments.

To reduce the effects of these consequences and to incorporate the additional

moment conditions, we assume that the underlying satisfy a Levy α−stable motion.

Under this assumption, we will derive the Finite Moment Log Stable (FMLS) model

and its respective fractional partial differential equation counterpart. Then, we will

solve the Black-Scholes equation under FMLS by using the standard finite difference

method and a finite volume scheme that significantly reduces the computational and

storage cost in comparison. Lastly, we will perform a numerical simulation of our

methods by using recent financial data in the S&P 500 market acquired within a

one-year time frame to compare the performance of these methods.
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Introduction

Constructed by Fischer Black and Myron Scholes, the Black-Scholes model is a fi-

nancial instrument designed to analyze the behavior of European option prices under

changes of maturity dates and the stochastic behavior of asset prices. Contrary to

most financial markets, this model assumes that asset prices are distributed normally

and thus, satisfy a geometric Brownian motion. Realistically, the volatility and in-

terest rate are varying and randomly behaved. To simplify the construction of the

Black-Scholes model, we assume that these parameters are constant and known. Our

choice of these parameters will be highly dependent on recent trends of the current

market. [2] Assuming the conditions previously mentioned, there exists a partial dif-

ferential equation that captures the behavior of European option prices satisfying the

Black-Scholes model. In most financial and mathematics literature, this equation is

commonly known as the Black-Scholes equation. The derivation of Black-Scholes can

be reproduced with stochastic analysis using applications of finance. One can also

derive the closed form solution of the Black-Scholes model by solving the traditional

diffusion model under specific changes of variables and Fourier transforms.

However, the Black-Scholes model fails to capture the behavior of option prices

under rare and extreme circumstances as these assumptions are not applicable real-

istically. This is shown immediately after the U.S. stock market crash of 1987, where

numerous academic resources have identified a consistent pattern found in the S&P

500 options market. At a given maturity date, the Black-Scholes model implies that,

with respect to the strike price, the volatilities for out-of-the-money puts are much

higher than out-of-the-money calls. In finance, this phenomenon is known as volatil-
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ity smirk. Under the measure of moneyness, the implied volatility smirk does not

flatten out as maturity increases. Namely, one can observe that the downward slope

of the volatility smirk corresponds to the asymmetry of the return distribution and

the positive curvature of the smirk correlates with the existence of leptokurtosis. [3]

Therefore, the conditional return distribution does not converge to normality, the

central limit theorem does not hold, and the assumption that asset prices satisfy a

geometric Brownian motion cannot be made in these rare situations. This calls for

a different model that accurately tracks this recent behavior of the S&P 500 options

market.

In doing so, we require the construction of a variant of the Black-Scholes model

to generalize the behavior of option pricing in various financial markets. We need to

model returns by considering an α-stable motion with maximum negative skewness

where α is the tail index satisfying 0 < α ≤ 2. The result of this model will combine

infinite return moments and finite price moments. These adjustments are necessary

to accurately reflect the observed behavior of S&P 500 option prices documented after

the market crash. When α = 2, the α-stable motion becomes the standard Brownian

motion, and the resulting model constructed from the α-stable motion degenerates

into the standard Black-Scholes model. Setting α < 2 yields many interesting prop-

erties that lie in the foundation of the study of fractional calculus. Similarly to the

Black-Scholes equation, there exists a fractional counterpart that reflects the generic

behavior of European vanilla option pricing. We begin Chapter 1 by deriving the clas-

sical Black-Scholes equation using methods in stochastic calculus and its applications

in finance. Then, we will gather an intuitive understanding of fractional derivatives

to study the traditional diffusion model and its fractional counterpart. We will con-

struct a generalization of the Black-Scholes model that requires the theory of stable

random variables to accurately track the behavior of European option pricing. Un-

der this derived model, we will finally derive and analyze the Black-Scholes equation

2
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under this model.

After this derivation, observing the behavior of the price of a European vanilla

option under this model and determining the respective analytic solution becomes

a natural question. In doing this, we study the closed form of the Levy density

function, which can be written in terms of the Fox H-function. When α = 2, the Levy

density function becomes the probability density function of the standard Gaussian

distribution. This function plays a crucial role in determining the analytic solution of

the price of European vanilla options. The properties that arise from the analytic form

of the Fractional Black-Scholes equation and its consistencies with the Black-Scholes

formula become other questions of interest. In Chapter 2, we derive this analytic

form using the Fox H-function and propose associated theorems that emphasize the

properties of the closed form corresponding to the Black-Scholes formula. We prove

these theorems to provide mathematical justification for the observations documented

in many options markets. We will also analyze the asymptotic behavior of the closed

form solution with respect to the log price and show that this solution satisfies the

put-call parity.

Many numerical methods have been proposed to solve partial differential equa-

tions with fractional order. Among many, the finite difference method is known to

be an effective method that uses numerical values evaluated at specific nodes to ap-

proximate intermediate values. This is achieved by partitioning bounded intervals

into finite increments and using the finite difference approximation of the derivatives

to construct a recursion that defines the behavior of the function. To use the finite

difference method, we are required to truncate the unbounded interval to the finite

interval [−ϕ, ϕ] for some constant ϕ. The constant ϕ depends on the maximum price

of the asset and can be readjusted with respect to the necessary conditions of the

market. In Chapter 3, we recall the definition of a fractional derivative in terms

of Grunwald weights from Chapter 1. We will show that a shift on the weights is

3
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required to yield a consistent and unconditionally stable solution of the finite differ-

ence method. Under the assumption that the log price is contained in some bounded

interval, this will result in a recursion that relates numerical values of consecutive

nodes. This recursion can be reverted into a matrix equation which can be solved

using standard Gaussian elimination.

Determining more efficient methods has been an area of interest in the study of

numerical analysis. We propose a few approaches in using efficient finite difference

methods which reduces the computational cost from O(m3) to O(m log2m) and the

storage cost from O(m2) to O(m) where m represents the number of unknowns. [13]

Contrary to the standard method of Gaussian elimination, this reduction of cost can

be achieved by proposing banded coefficient matrices that approximate the default

coefficient matrix with reduced storage cost. In the first approach, we require the

boundary conditions to take the value of zero at the endpoints. We circumvent this

issue by using the Taylor series expansion of the closed form to determine two points

which will take the same values. In the second method, we require the partial dif-

ferential equation to be rewritten conservatively. Both methods will generate matrix

equations that can be solved using banded coefficient matrices. In Chapter 4, we will

first manipulate the current problem so that the necessary conditions for both meth-

ods hold. After doing this, we will apply these methods for the fractional counterpart

of the Black-Scholes equation to determine the behavior of European vanilla option

pricing under the derived Finite Moment Log Stable process defined in Chapter 2.

Lastly, we will implement a Fast Conjugate Gradient Squared Method to accelerate

the performance of the finite volume scheme by reducing the storage cost.

In the last chapter, we will perform a numerical simulation of the finite difference

methods discussed throughout this thesis by using data observed in the most recent

one year time period of the S&P 500 options market. We will simulate the prices

in a graph to observe the effects of European put options as α varies. We will also

4
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discuss the accuracy of the finite volume scheme and emphasize the low CPU time

required to implement the method under various approaches. We will finally make

observations on the data acquired in our simulation to support the theory developed

in the previous chapters.

5
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Chapter 1

Model Problem

In this chapter, we will derive the Black-Scholes equation using financial applications

and stochastic calculus. This will require many assumptions to simplify the derivation

of the model. Under these assumptions, we will discuss why the Black-Scholes model

fails to capture the recent behavior of the S&P options market. We will proceed to

acquire an understanding of fractional derivatives by analyzing the fractional coun-

terparts of the traditional diffusion model and the central limit theorem. We turn to

a generalized class of stochastic processes that mimics many similar characteristics

of the conditional return distribution in the S&P options market. Specifically, we

will define and study properties of α-stable motion and derive a readjusted model

highlighting the inconsistencies of the traditional Black-Scholes model. Then we will

conclude this chapter by deriving the Black-Scholes equation under the FMLS model

using our understanding of fractional calculus and α-stable motion.

1.1 Preliminaries

In 1826-1827, Robert Brown conducted a study on the movement of particles from

pollen grains suspended in water. He noted that these particles move in an irregular

manner and that the motions of two distinct particles appear to be independent.

These observations are similarly observed in fluctuations of stock prices by French

mathematician Louis Bachelier in the early 1900s.

In 1905, Albert Einstein provided a mathematical explanation of the phenomena.

Consider a tube of clear water and inject a unit amount of ink at time t = 0 and

6
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at location x = 0. Define u(x, t) to be the density of ink particles at location x and

time t. Let f(y, τ) be the probability density function of an ink particle moving from

distance x to x + y in relatively small time τ . Then, by Taylor Series expansion of

u(x− y, t), we have:

u(x, t+ τ) =
∫ ∞
−∞

u(x− y, t)f(y, τ)dy

=
∫ ∞
−∞

( ∞∑
n=0

(−1)n
n!

∂nu(x, t)
∂xn

(x+ y)n
)
f(y, τ)dy

=
∫ ∞
−∞

( ∞∑
n=0

(−1)n
n!

∂nu(x, t)
∂xn

yn
)
f(y, τ)dy +O(τx)

=
∫ ∞
−∞

(
u(x, t)− ∂u(x, t)

∂x
y + 1

2
∂2u(x, t)
∂x2 y2

)
f(y, τ)dy +O(τ)

= u(x, t)
∫ ∞
−∞

f(y, τ)dy − ∂u(x, t)
∂x

∫ ∞
−∞

yf(y, τ)dy

+ 1
2
∂2u(x, t)
∂x2

∫ ∞
−∞

y2f(y, τ)dy +O(τ)

Since f is a probability density function, for any small τ , we have
∫ ∞
−∞

f(y, τ)dy =

1. Given f(−y, τ) = f(y, τ), it follows that
∫ ∞
−∞

yf(y, τ)dy = 0. We assume that the

variance of f is linear in τ ; that is, for some constant σ2 > 0, we have,

∫ ∞
−∞

y2f(y, τ)dy = σ2τ .

Continuing from our calculations, we have,

u(x, t+ τ) = u(x, t)
∫ ∞
−∞

f(y, τ)dy − ∂u(x, t)
∂x

∫ ∞
−∞

yf(y, τ)dy

+ 1
2
∂2u(x, t)
∂x2

∫ ∞
−∞

y2f(y, τ)dy +O(τ)

= u(x, t) + 1
2
∂2u(x, t)
∂x2 σ2τ +O(τ)

Equivalently,

u(x, t+ τ)− u(x, t)
τ

= 1
2
∂2u(x, t)
∂x2 σ2 +O(τ).

Letting τ → 0 yields,

7
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∂u(x, t)
∂t

= σ2

2
∂2u(x, t)
∂x2 .

The above partial differential equation is commonly known as the traditional

diffusion model. This model has the following closed-form solution:

u(x, t) = 1√
2πσ2t

exp
(
− x2

2σ2t

)
.

This diffusion model and its solution can be mathematically justified using random

walks and the Laplace-DeMoivre Theorem. A rigorous proof of the derivation and

the solution of this model can be found in Appendix A.

Later in this thesis, we will provide a second proof of the diffusion model using

Fourier transforms. We can extend this alternate proof to create a diffusion equation

involving fractional derivatives to gather intuition of super-diffusion. Specifically, we

will generalize our understanding of diffusion to develop an understanding of fractional

derivatives and their properties. This understanding is crucial to the derivation of

the Black-Scholes equation under the FMLS model.

1.2 Derivation and Consequences of Black-Scholes Model

In this section, we will derive and discuss the consequences of the Black-Scholes

model. More information can be referred to Roberts. [11] Let C(S, t) be the price of

a European call option for asset price S and time t. We assume that C(S, t) varies

smoothly with respect to t and S so that its partial derivatives ∂C
∂t
,
∂C

∂S
, and ∂2C

∂S2

are well defined and smoothly varying.

We wish to construct a risk-free portfolio of one call option and ϕ units of assets.

Let Π be the value of this portfolio. Since Π = −C(S, t) + ϕS is a function of

stochastic asset value S, Π is an Ito process. To observe the behavior of Π over a

small incremental change of time dt, we must consider the stochastic differential of

Π, namely dΠ = −dC + ϕdS.

8
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The key assumption of the Black-Scholes model is that asset price satisfies a

geometric Brownian motion. Therefore, we have

dS

S
= αdt+ βdWt

where Wt represents Brownian motion with respect to time t, and α and β repre-

sents the stock drift and stock volatility respectively. Equivalently,

dS = αSdt+ βSdWt.

We will use Ito’s Chain Rule (Theorem B.1) to derive the Black-Scholes equation.

The proof of this result can be found in Appendix B. Applying Ito’s Chain Rule with

Y = −C, x = S, µ = αS, and σ = βS yields the following:

dΠ =
((
−∂C
∂t
− αS∂C

∂S
− 1

2β
2S2∂

2C

∂S2

)
dt− βS∂C

∂S
dWt

)
+ ϕ (αSdt+ βSdWt)

=
(
−∂C
∂t
− αS∂C

∂S
− 1

2β
2S2∂

2C

∂S2 + αSϕ

)
dt+ βS

(
−∂C
∂S

+ ϕ

)
dWt

Under the assumption that the portfolio is risk-free, we require the volatility of

dΠ to be zero. This implies that to guarantee this assumption, we need ϕ = ∂C

∂S
. In

doing so, we obtain the following:

dΠ =
(
−∂C
∂t
− 1

2β
2S2∂

2C

∂S2

)
dt.

Furthermore, the risk-free assumption implies that the returns of the portfolio

equal to the returns of the investments made in bonds. With the value of the portfolio

being −C + ∂C

∂S
S and interest rate r, we have

dΠ = r

(
−C + ∂C

∂S
S

)
dt.

Equating the coefficients and rearranging terms yields the renownedBlack-Scholes

equation for the value C(S, t) of the call option,

9
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∂C

∂t
+ rS

∂C

∂S
+ 1

2β
2S2∂

2C

∂S2 = rC.

With the boundary conditions that for 0 ≤ t ≤ T and 0 < S < ∞, C(S, t) ∼ S

as S → ∞, and C(S, T ) = max{S − K, 0} for strike price K, the solution of the

Black-Scholes equation, known as the Black-Scholes Formula, is provided below:

C(S, t) = SN(d1)−Ke−r(T−t)N(d2)

where,

N(x) := 1√
2π

∫ x

−∞
exp

(
−1

2s
2
)
ds

And,

d1 =
log(S/K) + (r + 1

2β
2)(T − t)

β
√
T − t

d2 =
log(S/K) + (r − 1

2β
2)(T − t)

β
√
T − t

= d1 − β
√
T − t

Remark: Note that:

d2
1 − d2

2
2 = 1

2(d1 + d2)(d1− d2) = 1
2β
√
T − t

(
2d1 − β

√
T − t

)
= log(S/K) + r(T − t).

Therefore,

S

K
er(T−t) = N ′(d2)

N ′(d1) ⇐⇒ SN ′(d1) = Ker(T−t)N ′(d2).

The derivation of the Black-Scholes formula requires the correct substitutions for

many variables to transform the Black-Scholes model into the traditional diffusion

model. More details on the derivation of the Black-Scholes formula can be found in

Appendix C.

The Black-Scholes equation emphasizes the relationship between many observable

parameters and the stock volatility β; specifically by using the Black-Scholes Model,

β can be determined by the observable call option value C(S, t), the asset price S,

the time to maturity t, and the risk-free interest r.

10
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Note that by fixing these observable parameters in the Black-Scholes formula, we

have:

∂C

∂β
= SN ′(d1)∂d1

∂β
−Ker(T−t)N ′(d2)∂d2

∂β

=
√
T − t

(
Ker(T−t)N ′(d2)

)
+ ∂d1

∂β

(
SN ′(d1)−Ker(T−t)N ′(d2)

)
= S
√
T − tN ′(d1)

= S

√
T − t

2π exp
(
−d

2
1

2

)
> 0.

By the above calculations, we can deduce that the value of the call option is a

monotonic increasing function of its implied volatility. This enables us to compute the

volatility for various call options with respect to different asset prices and maturities.

Due to monotonicity, the implied volatility can be interpreted as a re-scaling of option

prices necessary to analyze its behavior with respect to the observable parameters. It

is known that in most financial markets, the implied volatility flattens out as maturity

increases, and thus, the conditional return distribution should converge to normality.

In finance, this behavior is renowned as the volatility smirk.

However, trends following the 1987 U.S. stock market crash suggest otherwise.

Contrary to the implications of the Black-Scholes model, it is well documented that

according to the S&P 500 index options market, the implied volatility does not flatten

out as maturity increases. This is made apparent when implied volatility is observed

with respect to maturity and financial measure moneyness d := log(S/K)
C
√
T−t , for some

constant C. Moneyness approximately determines the number of standard deviations

that the strike is apart from the forward price. It can be observed that the downward

slope of the observed smirk corresponds to asymmetry and the positive curvature of

this smirk corresponds to the fat tails in the conditional return distribution. Due to

these observations, the Black-Scholes model fails to capture the true behavior of the

recent trends of option pricing.

11
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This motivates us to study the effects of the return distribution when one changes

the stochastic behavior of asset prices. Recall that for the Black-Scholes model, we

assumed the following:

• The value of the call option varies smoothly.

• The asset price satisfies a geometric Brownian motion and returns are lognor-

mally distributed.

• The portfolio is risk-free and the model assumes constant volatility.

These assumptions are consequences of the validity of the central limit theorem.

We wish to readjust our model to compensate for the shortcomings of Black-Scholes.

In most financial literature, it has been proposed to assume that asset prices satisfy

a more generic class of stochastic processes called Levy α−stable motion. More

discussion on this class of stochastic processes will be presented later in this chapter.

One can construct a variant of the Black-Scholes equation that accurately reflects the

behavior of implied volatility over maturity in many financial markets.

In the next section, we will reprove the diffusion model using Fourier transforms

and highlight the correlation of this model to the central limit theorem. We will dis-

cuss the proof conceptually by using the theory of random walks and extend this proof

to derive the fractional diffusion model. Then, we will briefly discuss the correlation

of the fractional diffusion model to the conceptual ideas of super-diffusion.

1.3 Traditional and Fractional Diffusion Models

Recall that the traditional diffusion model is governed by the partial differential

equation:

∂u(x, t)
∂t

= σ2

2
∂2u(x, t)
∂x2

and has the closed-form solution:

12
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u(x, t) = 1√
2πσ2t

exp
(
− x2

2σ2t

)
.

We will reconstruct a proof of the diffusion model using Fourier transforms. This

will require a definition and an example that will be useful later in this thesis.

Definition 1.1. Let Y be a random variable with probability density function f(x),

differentiable and bounded on the interval [a, b] with f (n)(a) = f (n)(b) for all n. We

define the Fourier transform of f(x) to be the following:

f̂(k) = F{f(x)} := E[e−ikY ] =
∫ b

a
e−ikxf(x)dx.

Example 1.1. We will attempt to compute the Fourier transform of f (n)(x). We

claim that f̂ (n)(x) = (ik)nf̂(x) and proceed to prove the claim with induction. By

definition and applying integration by parts on f ′(x), we have,

f̂ ′(k) =
∫ b

a
e−ikxf ′(x)dx

= [e−ikxf(x)]ba + ik
∫ b

a
e−ikxf(x)dx

= ikf̂(x).

Now assume f̂ (m)(x) = (ik)mf̂(x). Then, similarly,

f̂ (m+1)(k) =
∫ b

a
e−ikxf (m+1)(x)dx

= [e−ikxf (m)(x)]ba + ik
∫ b

a
e−ikxf (m)(x)dx

= (ik)m+1f̂(x).

Therefore, we can deduce that f̂ (n)(x) = (ik)nf̂(x) for all n.

Let {Yn} denote a sequence of normal independent and identically distributed

random variables that represent the jumps of a randomly selected particle. We define

a random walk as the random variable, Sn = Y1 + · · · + Yn, which represents

the position of the particle after n steps. We can reinterpret this random walk by

13
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considering the position of a particle at time t > 0 and some scaling constant c (i.e.

let n = ct). Furthermore, suppose that E[Yn] = 0 and E[Y 2
n ] = σ2 > 0 and let f(x)

be the probability density function of Yn. By considering the Taylor series expansion,

we can deduce the following:

f̂(k) =
∫
e−ikxf(x)dx

=
∫ (

1− ikx+ 1
2!(−ikx)2 + · · ·

)
f(x)dx

=
∫
f(x)dx− ik

∫
xf(x)dx− k2

2

∫
x2f(x)dx+ o(k2)

= 1− σ2k2

2 + o(k2)

where the integrals are evaluated over the defined range of x. Note that by

linearity of expectation, we have,

E[e−ikSn ] = E[e−ik(Y1+Y2+···+Yn)] = E[e−ikY1 ] · · ·E[e−ikYn ] = E[e−ikY ]n = f̂(k)n.

Let u(x, t) be the probability density function of a random particle at time t > 0

and distance x. Since u is a probability density function, we require the scaling

constant c−1/2 to normalize Sn. Therefore,

E[e−ikc−1/2Sn ] =
(

1− σ2k2

2c + o(c−1)
)n

.

By using
(
1 + r

n
+ o(n−1)

)n
→ er, letting c→∞ and n→∞ yields,

exp
(
−1

2tσ
2k2

)
= E[e−ikZ ] = û(k, t)

where Z is a normalized random variable. It is plain that û(k, t) solves the fol-

lowing differential equation:

dû(k, t)
dt

= −σ
2

2 k
2û(k, t) = σ2

2 (ik)2û(k, t).

14
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Inverting the differential equation yields the traditional diffusion model. Similarly,

inverting the solution of the differential equation yields the closed-form solution of

the diffusion model. More details on the inversion are supplemented in Appendix D.

Consequentially, note that by Theorem D.1, since

E[e−ikc−1/2Sn ]→ exp
(
−1

2tσ
2k2

)
= E[e−ikZ ] =

∫
e−ikx

1√
2πσ2t

exp
(
−1

2tσ
2k2

)
,

we have,

n−1/2Sn = Y1 + · · ·+ Yn√
n

⇒ Z

when Z is Brownian motion with mean zero and variance σ2t. The convergence

of the distribution of random variables is commonly renowned as the central limit

theorem.

We will now extend this proof to derive the fractional diffusion model. Let X be

a Pareto random variable. Then, for all n, P[X ≤ x] = 1−Cx−α for constant C > 0,

x ≥ C1/α and 1 < α < 2. Taking the derivative of both sides yields the probability

density function denoted as:

f(x) =


Cαx−α−1 x ≥ C1/α

0 x < C1/α

Let 0 < p < α. Then the pth moment is given in the following computation:

E[Xp] =
∫
xpf(x)dx

= Cα
∫ ∞
C1/a

xp−α−1dx

= Cα

[
xp−α

p− α

]∞
C1/α

= α

α− p
Cp/α

Given that 1 < α < 2, the first moment exists and the second moment is unde-

fined. This implies that the mean of X exists and the variance of X doesn’t exist,

and thus, the central limit theorem does not hold. We will have to take this into

consideration as we construct the fractional diffusion model.

We state the following proposition:
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Proposition 1.1. Let X be a Pareto random variable with probability density function

defined as above for some 1 < α < 2. Then, as k → 0, the Fourier transform of f(x)

is

f̂(k) = 1− C1/α α

α− 1ik + C
Γ(2− α)
α− 1 (ik)α +O(k2).

Proof. Note that,

E[e−ikX ] =
∫ ∞
C1/α

e−ikxCαx−α−1dx

=
∫ ∞
C1/α

[
1− ikx+

(
e−ikx − 1 + ikx

)]
Cαx−α−1dx

= 1− C1/α α

α− 1ik +
∫ ∞

0

(
e−ikx − 1 + ikx

)
Cαx−α−1dx

−
∫ C1/α

0

(
e−ikx − 1 + ikx

)
Cαx−α−1dx.

Let

J(α) := C
∫ ∞

0

(
e−ikx − 1 + ikx

)
αx−α−1dx

and for s > 0, define,

Js(α) := C
∫ ∞

0

(
e(−ik−s)x − 1 + (ik − s)x

)
αx−α−1dx.

By the Dominated Convergence Theorem (Theorem D.3), the boundary conditions

vanish. Integration by parts yields the following:

Js(α) = C(−ik − s)
∫ ∞

0

(
e(−ik−s)x − 1

)
x−αdx

= C
−ik − s
α− 1

∫ ∞
0

(
e(−ik−s)x − 1

)
(α− 1)x−(α−1)−1dx.

Another integration by parts calculation yields,

Js(α) = C
−ik − s
α− 1

[[(
e(−ik−s)x − 1

)
(−x−(α−1))

]∞
0

+ (−ik − s)
∫ ∞

0
e(−ik−s)xx−(α−1)dx

]

The boundary terms vanish since e(−ik−s)x − 1 = O(x) as x → 0. Using the

characteristic function of a gamma probability density function:∫ ∞
0

eikx
ba

Γ(a)x
a−1e−bydx =

(
1− ik

b

)−a
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we have,

Js(α) = C
−ik − s
α− 1 (−ik − s)Γ(2− α)

s2−α

(
1 + ik

s

)−(2−α)

or,

Js(α) = C
ik + s

α− 1 Γ(2− α)(s+ ik)α−1 = CΓ(2− α)
α− 1 (s+ ik)α.

Using Theorem D.3, as we let s→ 0, we have,

Js(α)→ J(α) = CΓ(2− α)
α− 1 (ik)α.

For the second integral, by using Taylor series expansion, note that for all x, k ∈ R,

we have

|e−ikx − 1 + ikx| ≤ (kx)2

2! .

Thus, ∣∣∣∣∣
∫ C1/α

0

(
e−ikx − 1 + ikx

)
Cαx−α−1dx

∣∣∣∣∣ ≤ k2

2

∫ C1/α

0
Cαx−α−1dx

Or,
∣∣∣∣∣
∫ C1/α

0

(
e−ikx − 1 + ikx

)
Cαx−α−1dx

∣∣∣∣∣ ≤ k2

2 Cα
[
x2−α

2− α

]C1/α

0
= k2

2
α

2− αC
2/α = O(k2).

Thus,

f̂(k) = 1− C1/α α

α− 1ik + C
Γ(2− α)
α− 1 (ik)α +O(k2).

In the derivation of the fractional diffusion model, we will follow a similar method

used to prove the traditional case. Suppose that {Yn} denote a sequence of Pareto

random variables with mean zero. These random variables can be constructed by

letting Yn be independent and identically distributed with X − E[X].
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Using Proposition 1.1 for C = α− 1
Γ(2− α) and the Taylor series expansion for ez,

as k → 0, we have,

E[e−ik(X−E[X])] = [1− ikE[X] + (ik)α +O(k2)]
[
1 + ikE[X] + 1

2!(ikE[X])2 +O(k3)
]

= 1 + (ik)α +O(k2).

Let Sn = Y1 + · · · + Yn be a random walk denoting the position of the particle

after n steps and let f(x) be the probability density function of Yn. Recall that n

can be reinterpreted by considering the position of a particle at time t > 0 and some

scaling constant c (i.e. let n = ct). Let u(x, t) be the probability density function

of a random particle at time t > 0 and distance x. Since u is a probability density

function, we require the scaling constant c−1/α to normalize the sum Sn. Therefore,

E[e−ikc−1/αSn ] =
(

1− (ik)α
c

+O(c−2/α)
)n

.

Letting c→∞ and n→∞ yields,

et(ik)α = E[e−ikZ ] = û(k, t)

where Z is a normalized random variable. Again, it is clear that û(k, t) solves the

following differential equation:

dû(k, t)
dt

= (ik)αû(k, t).

We refer to Example 1.1 to construct a definition for the fractional derivative.

For the purpose of consistency, we define the fractional derivative dαf(x)
dxα

to be

a function whose Fourier transform is (ik)αf̂(k). Inverting the above differential

equation yields the fractional diffusion model provided below.

∂u(x, t)
∂t

= ∂αu(x, t)
∂xα

Specific details on the inversion are supplemented in Appendix D.

Consequentially, note that by Theorem D.1, since
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E[e−ikc−1/αSn ]→ et(ik)α = E[e−ikZ ] =
∫
e−ikxu(x, t)dx

we have,

c−1/αSn = Y1 + · · ·+ Yn
n1/α ⇒ Z

when Z is α−stable motion with mean zero. The convergence of the distribution

of random variables is renowned as the extended central limit theorem.

The above fractional diffusion equation models super-diffusion. In the traditional

case, the diffusion equation models the concentration of particles from one unit to

another. Particles contained in a unit of higher concentration have the tendency to

disperse into adjacent units of lower concentration. This physical behavior is known

as standard diffusion.

However, the fractional diffusion equation models the concentration of particles

from one unit to many adjacent units. The concentration of particles is spread par-

tially among all adjacent units of lower concentration. The amount of particles en-

tering into these units are distributed exponentially. Specifically, if the unit is closer

to the source, then there is an increased amount of particles that will enter the unit.

This distribution of particles is known as super-diffusion.

Compared to traditional diffusion, super-diffusion is a generalized measure of gra-

dient change. This measure is also more realistic in many scientific applications. For

these purposes, we tackle the inconsistencies of the Black-Scholes model by consider-

ing its fractional counterpart.

The solution of the fractional diffusion model is positively skewed with a heavy

power-law tail. Specifically, as x→∞, then for some constant A = A(C, t, α) > 0, we

have u(x, t) = Ax−α−1 + o(x−α−1). [7] Note that the tail behavior does not disappear

as u(x, t) is passed to limits. This is similar to how implied volatility behaves under

changes of maturity dates for S&P 500 options pricing after the stock market crash of

1987. As discussed previously, as maturity increases, there exists leptokurtosis in the
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return distribution and therefore the tails of this distribution appears fat compared

to the tails of the Gaussian.

Recall that in the necessary assumptions of the Black-Scholes model, we require

a generalization of Brownian motion to compensate for the recent behavior of option

prices. We consider a specific class of stochastic processes called Levy α−stable

motion and readjust our assumptions so that asset prices satisfy a Geometric Levy

motion. Given that the parameter α ∈ (1, 2], fractional derivatives will arise and

become crucial in the development of the Finite Moment Log Stable (FMLS) model.

This will require some background information on α−stable motion and fractional

derivatives. In the next section, we will first discuss about fractional derivatives and

its interesting properties.

1.4 Fractional Derivatives

As mentioned in the previous section, we have defined the fractional derivative as

a function dαf(x)
dxα

whose Fourier transform is (ik)αf̂(k). We will now provide an

alternate definition of fractional derivatives using standard calculus intuition.

Recall that the first derivative is defined by the following limit:

df(x)
dx

= lim
h→0

f(x)− f(x− h)
h

.

We will assume that this limit exists. For higher order derivatives, we have,

dnf(x)
dxn

= lim
h→0

∆nf(x)
hn

.

where ∆nf(x) =
∞∑
j=0

(
n

j

)
(−1)jf(x − jh) for n ∈ N. Extending this definition of

the difference operator for α ∈ R yields the following:

dαf(x)
dxα

= lim
h→0

∆αf(x)
hα

= lim
h→0

1
hα

∞∑
j=0

(
α

j

)
(−1)jf(x− jh).
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This is known as the Grunwald-Letnikov finite difference form for the frac-

tional derivative. We use the convention that
(
α

j

)
= Γ(α + 1)
j!Γ(α− j + 1) .

We will now state a proposition that shows that the two definitions of the fractional

derivative agree with each other.

Proposition 1.2. Let f(x) be a bounded function such that f and its derivatives

up to order n > 1 + α exist and are absolutely integrable for all α ∈ R. Then, the

Grunwald-Letnikov fractional derivative exists and as h → 0, the Fourier transform

of ∆αf(x)
hα

approaches (ik)αf̂(k).

Proof. Let wj :=
(
α

j

)
(−1)j. Then, by the Binomial formula, since,

∞∑
j=0

wj =
∞∑
j=0

(
α

j

)
(−1)j = (1 + (−1))α = 0

we have,
∞∑
j=0
|wj| =

∞∑
j=0

∣∣∣∣∣
(
α

j

)
(−1)j

∣∣∣∣∣ <∞.

With the assumption that f is bounded, then for −∞ < x < ∞, we have the

following uniform convergence:

∆αf(x) =
∞∑
j=0

(
α

j

)
(−1)jf(x− jh) <∞.

And therefore the Grunwald-Letnikov fractional derivative exists.

We will now propose a lemma that will assist us in proving the second half of the

theorem:

Lemma 1.2. If f(x) and all of its derivatives up to order n exist and are absolutely

integrable, then for all k ∈ R, there exists constant C > 0 such that,

|f̂(k)| ≤ C

1 + |k|n .
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Proof. Note that for |k| < 1, since 1 + |k|n ≤ 2,

(1 + |k|n)|f̂(k)| ≤ 2
∣∣∣∣∫ e−ikxf(x)dx

∣∣∣∣ ≤ 2
∫
|f(x)|dx.

Therefore,

|f̂(k)| ≤ 2
1 + |k|n

∫
|f(x)|dx.

Alternatively, note that by Example 1.1, we have,

f̂(k) = (ik)−n
∫
e−ikxf (n)(x)dx.

For |k| ≥ 1, since 1 + |k|n ≤ 2|k|n,

(1 + |k|n)|f̂(k)| ≤ 2|k|n
∣∣∣∣(ik)−n

∫
e−ikxf (n)(x)dx

∣∣∣∣ ≤ 2
∫
|f (n)(x)|dx.

Therefore,

|f̂(k)| ≤ 2
1 + |k|n

∫
|f (n)(x)|dx.

Letting C := max
{

2
∫
|f(x)|dx , 2

∫
|f (n)(x)|dx

}
proves the lemma.

Using Lemma 1.2, it follows that for all k,

|(ik)αf̂(k)| ≤ C|k|α

1 + |k|n .

Given that n > 1 + α, (ik)αf̂(k) is absolutely integrable. By applying Theorem

D.2, we can deduce that there exists a function with Fourier transform (ik)αf̂(k). By

an earlier discussion, we have denoted this function as the fractional derivative.

Since,
∫
e−ikxf(x− a)dx =

∫
e−ik(y+a)f(y)dy = e−ika

∫
e−ikyf(y)dy == e−ikaf̂(k),
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the Fourier Transform of ∆nf(x) is:
∫
e−ikx

∞∑
j=0

(
α

j

)
(−1)jf(x− jh)dx =

∞∑
j=0

(
α

j

)
(−1)j

∫
e−ikxf(x− jh)dx

=
∞∑
j=0

(
α

j

)
(−1)je−ikjhf̂(k)

= (1− e−ikh)αf̂(k)

And the Fourier Transform of h−α∆nf(x) is:

h−α(1− e−ikh)αf̂(k) = h−α(ikh)α
(

1− e−ikh
ikh

)α
f̂(k)

= (ik)α (1 +O(ihk))α f̂(k).

Letting h→ 0 yields that for all h,∫
e−ikxh−α∆nf(x)dx→ (ik)αf̂(k).

Since the Fourier transform of ∆nf(x)
hα

converges pointwise to d
αf(x)
dxα

, the conti-

nuity theorem for Fourier transforms proves the theorem.

Remark: The term wj defined in the previous proof is known as a Grunwald

weight. Note that by definition and properties of Γ(·),

wj =
(
α

j

)
(−1)j = (−1)jΓ(α + 1)

Γ(j + 1)Γ(α− j + 1) = −αΓ(j − α)
Γ(j + 1)Γ(1− α) .

Applying Stirling’s formula Γ(x+ 1) ∼
√

2πx
(
x

e

)x
as x→∞ yields,

wj ∼
−α

Γ(1− α)

√
j − α− 1

j

(
j − α− 1

j

)j−α−1

j−α−1eα+1.

Letting j →∞ yields,

wj ∼
−α

Γ(1− α)j
−α−1.

Note that,

∆αf(x)
∆xα = (∆x)−α

f(x) +
∞∑
j=1

wjf(x− j∆x)
.
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Let 0 < α < 1 and for j ≥ 1, define bj = −wj so that,

bj ∼
α

Γ(1− α)j
−α−1 as j →∞, and

∞∑
j=1

bj = 1.

Then,

∆αf(x)
∆xα = (∆x)−α

f(x)
∞∑
j=1

bj +
∞∑
j=1

(−bj)f(x− j∆x)


= (∆x)−α
∞∑
j=1

[f(x)− f(x− j∆x)]bj

≈
∞∑
j=1

[f(x)− f(x− j∆x)] α

Γ(1− α)(j∆x)−α−1∆x

≈
∫ ∞

0
[f(x)− f(x− y)] α

Γ(1− α)y
−α−1dy.

Passing to limits yields,

dαf(x)
dxα

=
∫ ∞

0
[f(x)− f(x− y)] α

Γ(1− α)y
−α−1dy.

After applying integration by parts, we have

dαf(x)
dxα

= 1
Γ(1− α)

∫ ∞
0

d

dx
f(x− y)y−αdy.

Rename u = x− y and taking the derivative outside yields,

dαf(x)
dxα

= 1
Γ(1− α)

d

dx

∫ x

−∞
f(u)(x− u)−αdu.

The above form is renowned as the Riemann-Liouville fractional derivative

for 0 < α < 1. Analogous forms can be constructed for other values of α. This

definition is necessary for the derivation of the Fractional Black-Scholes equation sat-

isfying the FMLS model. We will eventually restrict our attention for all α satisfying

1 < α < 2.
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1.5 α-Stable Variables and FMLS Model

In this section, we will develop a framework for α−stable random variables and discuss

about some properties they hold. We will further use these properties to construct the

Finite Moment Log Stable model. Readers can refer to Samorodinitsky and Taqqu

for proof of these properties. [12]

Firstly, we propose the definition of a Levy process to construct a similar definition

for α−stable motion.

Definition 1.2. A time-dependent random variable X is said to be a Levy process

if and only if X has independent and stationary increments. The Levy-Khintchine

representation of the log-characteristic function of X is provided below:

logE[eikX(t)] = mitk − 1
2σ

2tk2 + t
∫
R\{0}

(eikx − 1− ikxI|x|<1)dW

with drift m ∈ R, volatility σ ≥ 0, indicator function I and Levy measure W

satisfying:

∫
R\{0}

min{1, x2}dW <∞.

If Levy measure dW is of the form w(x)dx, we define w(x) to be the Levy density.

For our purposes, the Levy density of α−stable process is defined as:

wLS(x) =


1
2(1− β)D|x|−1−α x < 0
1
2(1 + β)Dx−1−α x > 0

where D > 0, and skewness −1 < β < 1, and 0 < α ≤ 2. Applying Definition 1.2

for this Levy density yields the following characteristic exponent Ψ(k):

Ψ(k) = ikµ− 1
2 |k|

ασα
(

1− iβ(sgn(k)) tan πα2

)

with drift µ and volatility σ. This motivates us to study a class of Levy processes

called α−stable processes. We will shortly show that this class of stochastic processes
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satisfy the desired conditions reflected in the S&P options market. We provide the

following definition:

Definition 1.3. A random variable X is said to have an α−stable distribution if for

the given parameters, we have the following conditions: index of stability 1 < α ≤ 2,

drift µ, dispersion σ ≥ 0, and skewness parameter −1 ≤ β ≤ 1, then the characteristic

function of X, ϕX = ϕX(k), is:

ϕX = E[eikX ] = exp
[
ikµ− |k|ασα

(
1− iβ(sgn(k)) tan πα2

)]

Letting α = 2 yields the characteristic function of a Gaussian random variable W

with mean µ and variance 2σ2. Specifically, we have,

ϕW = E[eikW ] = exp
[
ikµ− k2σ2

]
.

In this class of stochastic processes, the thickness of the tails remains invariant

under time. This is shown with the following property.

Property 1.1. Let X be α−stable with α < 2, dispersion σ, skewness β, and drift

µ. The tails remain "fat" and the tail probabilities are given as follows:

lim
λ→∞

λαP (±X > λ) = C(α)1± β
2 σα

where,

C(α) =
(∫ ∞

0

sin x
xα

dx
)−1

=


1− α

Γ(2− α) cos(πα/2) α 6= 1

2/π α = 1
.

When X is maximally negatively skewed with zero drift (i.e. β = −1, µ = 0), we

have

P (X > λ) ∼ 1√
2πα(α− 1)

(
λ

αC(σ, α)

)−α/(2α−2)

exp
−(α− 1)

(
λ

αC(σ, α)

)α/(α−1)


where,
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C(σ, α) = σ

(
cos (2− α)π

2

)−1/α

This property also suggests that for α < 2, the tail probabilities behave like λ−α

and therefore exhibits a "power-law"-like behavior. Note that since the tail behavior

does not flatten out as maturity increases, α−stable variables violate the implications

of the central limit theorem. This suggests that variance for log return is infinite.

The questions of the existence of a martingale measure and whether option values

are finite or infinite arise.

By setting the condition of α−stable motion to have maximum negative skewness,

we claim that conditional moments of all orders exist for 1 < α < 2. To show this,

we need to propose three additional properties of α−stable motion that will assist us

in the proof of our claim. We will first start off by providing a definition and some

notation.

Definition 1.4. Let Y be a random variable with probability density function f(x).

We define the Laplace transform of f(x) to be the following:

f̃(s) = B{f(t)} := E[e−sX ] =
∫ ∞

0
e−stf(t)dt.

We define the two-sided Laplace transform of f(x) to be the following:

f̃(s) = B{f(t)} := E[e−sX ] =
∫ ∞
−∞

e−stf(t)dt.

Similarly to how we have notated Wt = W (t) for Brownian motion, we also

propose a notation for Levy α−stable motion. Formally, we will denote Lα,βt =

Lα,β(t) as the standardized Levy α−stable motion with tail index 0 < α ≤ 2, and

skew parameter −1 ≤ β ≤ 1. Furthermore, by Definition 1.3, given that there are

four parameters, we will conveniently notate the distribution of α−stable motion as

Lα(µ, σ, β). We say that if X has a stable distribution with the above parameters,

we notate this as X ∼ Lα(µ, σ, β).

We will now proceed to mention some additional properties:
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Property 1.2. Let X ∼ Lα(µ, σ, β). The two-sided Laplace transform of X is not

finite unless β = 1. For β = 1, we have the following Laplace transform:

E[e−sX ] = exp
(
−sµ− sασα sec απ2

)
.

Property 1.3. For any 0 < α < 2,

X ∼ Lα(0, σ, β)⇔ −X ∼ Lα(0, σ,−β).

Property 1.4. For any 0 < α < 2, we have E[|X|p] < ∞ for any 0 < p < α and

E[|X|p] =∞ for p > α.

What makes α−stable processes so appealing for the construction of our new

model is described by these properties. As mentioned previously, Property 1.1 sug-

gests that the tail behavior is invariant to maturity. We say that this property

exhibits self-similarity. Property 1.2 defines the Laplace transform for α−stable

random variable X with maximum positive skewness, and Property 1.3 allows us to

determine a closed form for the Laplace Transform by relating X to −X. Lastly,

Property 1.4 describes the finiteness condition for the moments of X depending on

α.

Let Lα,βt be a Levy α−stable process with skew parameter β. Define St to be the

stock price and assume that St satisfies the following stochastic differential equation:

for time 0 < t < T , index of stability 1 < α < 2, and volatility σ > 0,

dSt
St

= (r − q)dt+ σdLα,−1
t

where r and q respectively denote deterministic parameters corresponding to the

risk free rate and dividend yield. We selectively restrict β = −1 to obtain finite

moments of St and negative skewness in the return density distribution. Specifically

by Properties 1.3 and 1.2, for n > 0,

E[exp
(
nσLα,−1

t

)
] = exp

(
−tnασα sec πα2

)
<∞.
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This suggests that a martingale measure exists for β = −1. Furthermore, we

restrict α to satisfy 1 < α < 2 so that St remains unbounded. We define the

above stochastic differential equation to be the Finite Moment Log Stable Model

(FMLS model). In regards to this model, we state and prove the following proposi-

tion. The proposition is two-fold.

Proposition 1.3. Let sτ := log ST
St

be the log return over maturity τ = T − t. Then,

i) sτ ∼ Lα((r − q + µ)τ, στ 1/α,−1) with convexity adjustment µ = σα sec πα2 .

ii) For all n ≥ 0, the nth conditional moment of ST is well defined and given as,

E[SnT ] = SnT exp
(
n(r − q + µ)τ − τ(nσ)α sec πα2

)
<∞

Proof. Let St satisfy the above stochastic differential equation for all 0 < t ≤ T ,

1 < α < 2, and σ > 0. We can re-express ST in the following exponential form:

ST = Ste
(r−q)τ exp

(
µτ + σLα,−1

τ

)
where µ is specifically chosen so that E[

(
µτ + σLα,−1

τ

)
] = 1. Note that by Property

1.3 and 1.2, we have

E[exp(σLα,−1
τ )] = E[exp(−σLα,1τ )] = exp

(
−τσα sec πα2

)
.

This requires µ = σα sec πα2 < ∞. With this choice of µ, we have the following

exponential form,

ST = Ste
(r−q+µ)τ exp (σLα,−1

τ ).

Therefore, the log return sτ satisfies

sτ = log ST
St

= (r + q + µ)τ + σLα,−1
τ .

Note that sτ is α−stable distributed with mean (r−q+µ)τ , dispersion στ 1/α, and

skewness β = −1. We can further deduce that by Property 1.4, the variance of sτ or
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any moments of order higher than α is not finite. This proves the first statement of

the proposition.

Note that for n ≥ 0, by Property 1.2,

E[SnT ] = Snt e
n(r−q+µ)τE

[
exp

(
nσLα,−1

τ

)]
= Snt exp

(
n(r − q + µ)τ − τ(nσ)α sec πα2

)
<∞.

This proves the second statement of the proposition. The proof is complete.

With the proposition proven, the FMLS model performs better than the standard

Black-Scholes model in reflecting how S&P option prices behave after the 1987 U.S.

stock market crash. As desired, under the FMLS model, the return distribution

contains "fat" tails with the extra condition of infinite return moments and finite

price moments.

1.6 Derivation of Black-Scholes Equation Under FMLS Model

In Section 1.2, we have derived the Black-Scholes model and its corresponding par-

tial differential equation using the assumption that asset prices satisfy a geometric

Brownian motion. Alternatively, by applying Ito’s Chain Rule (Theorem B.1), the

Black-Scholes model states that for asset price St, the log price satisfies the following

stochastic differential equation:

d(logSt) =
(
r − q − 1

2σ
2
)
dt+ σdWt

with risk-free rate r > 0, dividend yield q > 0 and volatility σ ≥ 0. The price

of a European call option C(S, t) with St satisfying the above stochastic differential

equation is given in Section 1.2. With a change of variables xt = logSt, the Black-

Scholes equation can be rewritten as the following advection-diffusion type equation:

∂C(x, t)
∂t

+ 1
2σ

2∂C(x, t)
∂x2 +

(
r − 1

2σ
2
)
∂C(x, t)
∂x

= rC(x, t)
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with C(x, t) representing the price of a European call option under the Black-

Scholes model and risk-free rate r.

In this section, we generalize the derivation of the partial fractional differential

equation that arise from the FMLS model. More details can be referred in Cartea

and del-Castillo-Negrete. [4] We readjust the Black-Scholes model by assuming that

the stock price follows a geometric Levy process with maximum negative skewness.

This motivates us to consider the following stochastic differential:

d(logSt) = (r − q − v) dt+ σdLα,−1
t .

The above equation has the following solution:

ST = St exp
(

(r − q − v)τ + σ
∫ T

t
dLα,−1

τ

)

where τ = T − t and v is a convexity adjustment so that E[ST ] = e(r−q)τSt.

In determining the corresponding fractional partial differential equation that models

the behavior of the value of a European call option V (x, t), we prove the following

proposition that provides a differential equation which governs the behavior of its

Fourier transform.

Proposition 1.4. Let V (x, t) be the value of a European call option under the con-

vention that x := x(t) = logSt, for asset price St with 0 ≤ t ≤ T . We assume that

St satisfies a Geometric Levy distribution. Then, the Fourier transform of V (x, t),

V̂ (x, t), satisfies the following differential equation:

∂V̂ (k, t)
∂t

= (r + ik(r − v)−Ψ(−k)) V̂ (k, t)

where Ψ(k) is the characteristic exponent for some Levy process.

Remark: For the FMLS process, by Definition 1.2, we have,

Ψ(k) = ikµ− 1
2 |k|

ασα
(

1− iβ(sgn(k)) tan πα2

)
.
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Equivalently, we have,

Ψ(k) = −1
4σ

α sec απ2 ((1− β)(ik)α + (1 + β)(−ik)α).

Thus, for β = −1, we have,

Ψ(−k) = −1
2σ

α sec απ2 (−ik)α.

More details are provided in Benson, Meerschaert, and Wheatcraft. [1]

Proof. Assuming the market is risk-free, the value of the European call option can

be written in terms of the expected value of the final payoff. Let Π(x, T ) be the final

payoff of the portfolio. Then for interest rate r and maturity τ := τ(t) = T − t, we

have,

dV (xt, t) = rE[Π(xT , T )]dt = −rE[Π(xT , T )]dτ .

Equivalently,

V (xt, t) = e−r(T−t)E[Π(xT , T )].

Assuming that Π(x, T ) has a Fourier transform, applying Theorem D.2 on Π(xT , T )

yields,

V (xt, t) = e−r(T−t)

2π E
[∫ ∞
−∞

e−ikxT Π̂(k, T )dk
]
.

By linearity of expectation and using the characteristic function of xT = logST ,

we have,

V (x, t) = e−r(T−t)

2π

∫ ∞
−∞

E
(
e−ikxT

)
Π̂(k, T )dk

= e−r(T−t)

2π

∫ ∞
−∞

e−ikxt−ik(r−v)(T−t)e(T−t)Ψ(−k)Π̂(k, T )dk.

Applying Theorem D.2 on V (x, t) and equating forms yields,

V̂ (k, t) = e[−r−ik(r−v)+Ψ(−k)](T−t)Π̂(k, T )
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with V̂ (k, T ) = Π̂(k, T ). It can easily be checked that the above function solves

the differential equation:

∂V̂ (k, t)
∂t

= (r + ik(r − v)−Ψ(−k)) V̂ (k, t).

By the previous remark, we have established that under the FMLS model with

maximum negative skewness,

Ψ(−k) = −1
2σ

α sec απ2 (−ik)α.

With convexity adjustment v = −1
2σ

α sec απ2 in Proposition 1.3, by Proposition

1.4, we have,

∂V̂ (k, t)
∂t

=
(
r + ik

(
r + 1

2σ
α sec απ2

)
+ 1

2σ
α sec απ2 (−ik)α

)
V̂ (k, t).

Using Theorem D.2 on both sides yields,

∂V (x, t)
∂t

+
(
r + 1

2σ
α sec απ2

)
∂V (x, t)
∂x

− 1
2σ

α sec απ2
∂αV (x, t)
∂xα

= rV (x, t)

where,

∂αV (x, t)
∂xα

= 1
Γ(1− α)

d

dx

∫ x

−∞
V (u, t)(x− u)−αdu.

The above fractional partial differential equation is renowned as the Black-Scholes

Equation under the FMLS model. This is the equation that we will be studying the

solutions for throughout this paper.

Remark: Note that if α = 2, the derived Black-Scholes equation degenerates into

the classical Black-Scholes equation in its advection-dispersion form, given below:

∂C(x, t)
∂t

+ 1
2σ

2∂
2C(x, t)
∂x2 +

(
r − 1

2σ
2
)
∂C(x, t)
∂x

= rC(x, t).
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Chapter 2

Analytic Solution

From the previous chapter, we have established that under the FMLS model, the

log price under the risk-neutral measure satisfies the following stochastic differential

equation:

d(logSt) = (r − q − v)dt+ σdLα,−1
t

where r and q are the risk-free interest rate and the dividend yield respectively,

and v = −1
2σ

α sec απ2 represents the convexity adjustment. Let V (x, t) be the price

of the European call option with x = xt := logSt. From the previous chapter, we have

shown that V (x, t) satisfies the Black-Scholes equation under FMLS given below: for

all 0 ≤ t ≤ T , and 1 < α ≤ 2,

∂V (x, t)
∂t

+
(
r + 1

2σ
α sec απ2

)
∂V (x, t)
∂x

− 1
2σ

α sec απ2
∂αV (x, t)
∂xα

= rV (x, t)

with boundary conditions,

V (x, T ) = Π(x) :=


max{ex −K, 0} for European call option

max{K − ex, 0} for European put option

where K is the strike price and,

∂αV (x, t)
∂xα

= 1
Γ(1− α)

d

dx

∫ x

−∞
V (u, t)(x− u)−αdu.

In this chapter, we will determine a closed-form analytical solution of the Black-

Scholes equation using Fourier transforms. We will state a few theorems relating our

solution to the Black-Scholes pricing formula provided in the previous chapter. More

information can be referred to Chen, Xu, and Zhu. [5]
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2.1 Preliminaries

In our derivation of the generalization of the Black-Scholes formula, we require addi-

tional definitions and properties of α−stable motion. We also require a lemma that

will help us prove a theorem discussed later in this thesis.

By Definition 1.3, the characteristic function of α−stable random variable X with

drift µ, dispersion σ ≥ 0, and skewness parameter β ∈ [−1, 1] is

ϕ(k) = exp
(
ikµ− |k|ασα

(
1− iβsgn(k) tan απ2

))
.

Letting β = 0 yields a symmetric distribution with translation constant µ and

scaling factor σα. This can be shown by considering the Levy density function.

Namely, for β = 0 and for some constant C > 0, the Levy density becomes

wLS(x) =


C|x|−1−α x < 0

Cx−1−α x > 0

Note that the Levy density function under this choice of β is symmetrical. Since

wLS correlates to the behavior of the distribution, it implies that the Levy distribution

is centered and symmetrical. Therefore, for 1 < α ≤ 2, |ϕ(k)| = exp (−|k|α).

In general, under new centring constant β satisfying

|β| ≤


α 0 < α < 1

2− α 1 < α < 2

and by removing the drift and dispersion by letting µ = 0 and σ = 1, the log

characteristic function of X, Ψ(k), is defined as follows:

Ψ(k) = −|k|α exp
(
i
πβ

2 sgn(k)
)
.

This motivates the following property.

Property 2.1. Let fα,β(x) be the probability density function of α−stable variable

X. fα,β is the Fourier transform of characteristic function ϕ(z), given as follows
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fα,β(x) = 1
π
Re
∫ ∞

0
exp

(
−ixz − zα exp

(
iπβ

2

))
dz.

Now, we propose the definition of a function that plays a central role in the

determination of solutions for fractional partial differential equations.

Definition 2.1. Let Ai, Bi > 0, 0 ≤ m ≤ q and 0 ≤ n ≤ p be constants. Let aj, bj

be complex numbers such that no pole of Γ(bj −Bjs) for j = 1, · · · ,m coincides with

any pole of Γ(1− aj + Ajs) for j = 1, · · · , n. We define the Fox H-function to be

the following function:

Hm,n
p,q (z) := Hm,n

p,q

z (a1, A1) · · · (ap, Ap)

(b1, B1) · · · (bp, Bp)


= 1

2πi

∫
C

Πm
j=1Γ(bj −Bis)Πn

j=1Γ(1− aj + Ajs)
Πp
j=n+1Γ(aj + Ajs)Πq

j=m+1Γ(1− bj +Bjs)
zsds

where C is a contour in the complex plane such that bj+k
Bj

and aj−1−k
Aj

lie to the

right and left of C, respectively.

The probability density function of stable variables can be rewritten in terms of

this special function. We will propose the analytic form of the probability density

function using the Fox H-function.

Property 2.2. For α > 1, the analytic form of fα,β is given as follows:

fα,β(x) = 1
α
H1,1

2,2

x (1− 1
α
, 1
α

) (1− α−β
2α ,

α−β
2α )

(0, 1) (1− α−β
2α ,

α−β
2α )


Soon, we will see that the closed-form solution of the Black-Scholes equation can

also be written in terms of the Fox H-function. Crucial to the understanding of Fox-H

functions, we will propose the definition of Mellin transforms:

Definition 2.2. We define the Mellin transform of a function f to be the follow-

ing:
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M{f(x)} =
∫ ∞

0
xs−1f(x)dx.

The inverse Mellin transform is defined as:

M−1{f(s)} = 1
2πi

∫ c+i∞

c−i∞
x−sf(s)ds

where the line integral is taken along a vertical line in the complex plane.

Lastly, we propose the following lemma that emphasizes the properties of the

Gamma Function:

Lemma 2.1. (Gauss Multiplication Formula) For all z ∈
{
−m
n

: m /∈ N
}
,

n−1∏
k=0

Γ
(
z + k

n

)
= (2π)

n−1
2 n

1
2−nzΓ(nz).

Proof. The Euler form of the Gamma Function is provided below: For all z ∈ R\Z−,

Γ (z) = 1
z

∞∏
n= 1

(
1 + 1

n

)z (
1 + z

n

)−1
= lim

m→∞

mzm!
z (z + 1) (z + 2) . . . (z +m) .

Using this definition of the Euler form, Stirling’s formula and properties of the

Gamma function, namely Γ(z + 1) = zΓ(z), we have:

Γ
(
z + k

n

)
=
(
z + k

n
− 1

)
Γ
(
z + k

n
− 1

)

= lim
m→∞

m!mz+k/n−1(
z + k

n

) (
z + k

n
+ 1

)
· · ·

(
z + k

n
− 1 +m

)
= lim

m→∞

√
2πm

(
m
e

)m
mz+k/n−1(

z + k
n

) (
z + k

n
+ 1

)
· · ·

(
z + k

n
− 1 +m

)
= lim

m→∞

√
2π
(
mn
e

)m
mz+k/n−1/2

(nz + k) (nz + k + n) · · · (nz + k − n+mn) .

Therefore, making a substitution of mn 7→ m and reapplying the Euler form of

the Gamma Function, Stirling’s formula, and properties of the Gamma Function, we
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have:

n−1∏
k= 0

Γ
(
z + k

n

)
= lim

m→∞

(√
2π
)n (

mn
e

)mn
mnz−n/2m

∑n−1
k=0 k/n

(nz) (nz + 1) · · · (nz − 1 +mn)

= lim
m→∞

(√
2π
)n (

mn
e

)mn
mnz−1/2

(nz) (nz + 1) · · · (nz − 1 +mn)

= lim
m→∞

(√
2π
)n (

m
e

)m
mnz−1/2n1/2−nz

(nz) (nz + 1) · · · (nz − 1 +m)

= lim
m→∞

(√
2π
)n−1

m!mnz−1n1/2−nz

(nz) (nz + 1) · · · (nz − 1 +m)

= (2π)(n−1)/2 n1/2−nz (nz − 1) Γ (nz − 1)

= (2π)(n−1)/2 n1/2−nzΓ (nz) .

The proof is complete.

2.2 Closed-Form Analytical Solution

Firstly, define τ := −1
2σ

α sec απ2 (T − t). The Black-Scholes equation becomes the

following:

∂V

∂τ
= (γ − 1)∂V

∂x
+ ∂αV (x, τ)

∂xα
− γV

with boundary conditions V (x, 0) = Π(x) for Π defined previously and γ =

− 2r
σα

cos απ2 . γ can be reinterpreted as the relative interest rate with respect to

volatility of fractional order. Taking the Fourier Transform on the above fractional

partial differential equation yields the following:

∂V̂

∂τ
= (γ − 1)ik∂V̂

∂x
− |k|αV̂ − γV̂

with boundary conditions V̂ (k, 0) = Π̂(k) where Π̂ is the Fourier Transform of the

payoff function Π. The above differential equation has the following solution:

V̂ (k, τ) = e−γτ Π̂(k) exp (−(1− γ)τik − |k|ατ).
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Applying the convolution theorem for Fourier Transforms yields the following

convolution,

V (x, τ) = e−γτV (x, 0) ∗ F−1{exp (−(1− γ)τik − |k|ατ)}

Define P (x) := F−1{e−|k|ατ}. Applying the shift theorem for Fourier transforms

yields the following:

V (x, τ) = e−γτV (x, 0) ∗ P (x− (1− γ)τ)

By previous discussion, e−|k|α is the characteristic function of a centered and sym-

metric Levy distribution. Therefore Property 2.1 implies that the Fourier inversion

of e−|k|ατ is a multiple of the Levy stable density function fα,0. Applying Property

2.2 yields the following representation of P :

P (x) = 1
τ 1/αfα,0

(
|x|
τ 1/α

)
= 1
ατ 1/αH

1,1
2,2

 |x|τ 1/α

(1− 1
α
, 1
α

) (1
2 ,

1
2)

(0, 1) (1
2 ,

1
2)

.
Thus,

V (x, τ) =
∫ ∞
−∞

e−γτΠ(k) ∗ 1
τ 1/αfα,0

(
|x− k − (1− γ)τ |

τ 1/α

)
dk

Or equivalently,

V (x, τ) =
∫ ∞
−∞

e−γτΠ(x− (1− γ)τ − τ 1/αk)fα,0 (|k|) dk.

Let Vp(x, τ) and Vc(x, τ) be the price for a European put option and a European

call option respectively. For European put options, we have:

Vp(x, τ) = Ke−γτ
∫ ∞
d1

fα,0 (|k|) dk − ex
∫ ∞
d1

exp
(
−τ − τ 1/αk

)
fα,0 (|k|) dk

where d1 = x− logK − (1− γ)τ
τ 1/α . An analogous solution for European call op-

tions can be determined similarly. We will refer the above formula as the Black-

Scholes Formula under the FMLS model. In the next section, we will discuss about

the properties associated with this formula.
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2.3 Properties of Black-Scholes Formula Under FMLS Model

Recall that when α = 2, the FMLS model degenerates to the traditional BS model.

Furthermore, for boundary conditions 0 ≤ t ≤ T and 0 < S <∞ such that C(S, t) ∼

S as S → ∞, and C(S, T ) = max{S −K, 0} for strike price K, the solution of the

Black-Scholes equation is provided below:

C(S, t) = SN(d1)−Ker(T−t)N(d2)

where,

N(x) := 1√
2π

∫ x

−∞
exp

(
−1

2s
2
)
ds

and,

d1 =
log(S/K) + (r + 1

2β
2)(T − t)

β
√
T − t

d2 =
log(S/K) + (r − 1

2β
2)(T − t)

β
√
T − t

= d1 − β
√
T − t.

We will show that by setting α = 2, our derived Black-Scholes formula degenerates

into the standard Black-Scholes formula mentioned above.

Note that the Fox H-function is defined as a Mellin transform of a rational ex-

pression of the Gamma function. We will use this fact in the proof of the following

theorem.

Theorem 2.2. For European put options, the Black-Scholes formula under FMLS

model degenerates to the Black-Scholes formula as α→ 2. Equivalently,

lim
α→2

Vp(x, τ) = Ke−γτN(−d2)− exN(−d1)

where d1 = x− logK + (γ − 1)τ√
2τ

, d2 = d1 −
√

2τ , and

N(x) := 1√
2π

∫ x

−∞
exp

(
−1

2s
2
)
ds.
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Remark: The above variant is equivalent to the standard Black-Scholes formula.

This is achieved by making the following substitutions: r := γ, β :=
√

2, and S := ex.

Proof. By Property 2.2, we have,

f2,0 (|k|) = lim
α→2

fα,0 (|k|)

= lim
α→2

1
α
H1,1

2,2

|m| (1− 1
α
, 1
α

) (1
2 ,

1
2)

(0, 1) (1
2 ,

1
2)



= 1
2H

1,1
2,2

|m| (1
2 ,

1
2) (1

2 ,
1
2)

(0, 1) (1
2 ,

1
2)



= 1
2H

1,0
1,1

|m| (1
2 ,

1
2)

(0, 1)


where,

H1,0
1,1 (z) := H1,0

1,1

z (a1, A1)

(b1, B1)

 = 1
2πi

∫
C

Γ(b1 +B1s)
Γ(a1 + A1s)

zsds.

The Fox H-function is defined as a Mellin transform of a rational expression of

the Gamma function. By Definition 2.2, we see thatM{f2,0 (|k|)} = 1
2

Γ(s)
Γ(1

2 + 1
2s)

.

Applying Lemma 2.1 for n = 2 yields:

Γ (z) Γ
(
z + 1

2

)
= (2π) 1

2 2 1
2−2zΓ(2z)

or equivalently,

Γ (z) Γ
(
z + 1

2

)
= 21−2z√πΓ(2z).

Substituting z = s

2 yields,

Γ
(
s

2

)
Γ
(
s

2 + 1
2

)
= 21−s√πΓ(s).

Therefore,

M{f2,0 (|k|)} = 1
2

Γ(s)
Γ(1

2 + 1
2s)

=
(1

2)−sΓ(1
2s)

4
√
π

.
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Taking the inverse Mellin transform yields,

f2,0 (|k|) =M−1
{

1
2

Γ(s)
Γ(1

2 + 1
2s)

}
=M−1

{
(1

2)−sΓ(1
2s)

4
√
π

}
= e−k

2/4

2
√
π
.

This shows that f2,0 (|k|) is identical to the Gaussian density function. Thus, by

the Black-Scholes formula under FMLS model, with some algebraic manipulation,

the Black-Scholes formula is obtained. Thus, the theorem is proved.

We can also determine the asymptotic behavior of our newly derived solution of

the fractional partial differential equation. This will allow us to study the behavior

of option pricing for extreme values. We will now propose the following theorem and

provide proof.

Theorem 2.3. For European put options, for 1 < α ≤ 2, we have:

lim
x→−∞

Vp(x, τ) = Ke−γτ and lim
x→∞

Vp(x, τ) = 0.

Proof. Note that as x → −∞, we have d1 → −∞. For symmetric Levy density, we

have
∫ ∞
−∞

fα,0 (|k|) dk = 1. Thus, we have

lim
x→−∞

Vp(x, τ) = Ke−γτ
∫ ∞
−∞

fα,0 (|k|) dk − lim
x→−∞

ex
∫ ∞
d1

exp
(
−τ − τ 1/αk

)
fα,0 (|k|) dk

= Ke−γτ .

This proves the first statement of the theorem. To observe the behavior of the

Black-Scholes equation under FMLS model for European puts as log price approaches

infinity, we note that

lim
x→∞

Vp(x, τ) = Ke−γτ
∫ ∞
∞

fα,0 (|k|) dk − lim
x→∞

ex
∫ ∞
d1

exp
(
−τ − τ 1/αk

)
fα,0 (|k|) dk

= − lim
x→∞

1
e−x

∫ ∞
d1

exp
(
−τ − τ 1/αk

)
fα,0 (|k|) dk.
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Applying L’Hopital’s Rule and using the fact that any density function approach

zero as x→∞, we have,

lim
x→∞

Vp(x, τ) = K lim
x→∞

e−τγτ−1/αfα,0 (|d1|)

= Ke−τγτ−1/α lim
x→∞

fα,0 (|d1|)

= 0

since d1 →∞ as x→∞. This completes the proof of the theorem.

The implications of Theorem 2.3 are expected. Under the FMLS model, a Euro-

pean put option is expected to hold the current value of the discounted strike price

if asset price becomes really small. On the other hand, a European put option is

expected to hold no value if the asset price increases to infinity.

In our derivation of the traditional Black-Scholes model, we specifically derived

a partial differential equation that determines the behavior of European call options

over maturity. Our derivation of the Black-Scholes equation applies to the behavior

of European put options. It is our interest to determine if the relationship that lies

between put option pricing and call option pricing satisfies the put-call parity. We

will state and provide a proof of the following theorem.

Theorem 2.4. For 1 < α ≤ 2, under the same strike price K and maturity τ , the

price of a European call option and the price of a European put option satisfies the

put-call parity. Equivalently,

Vc(x, τ)− Vp(x, τ) = ex −Ke−γτ .

Proof. Given that the price of both European call option and put option satisfies the

Black-Scholes equation under FMLS model, for Vc−p(x, τ) := Vc(x, τ) − Vp(x, τ), we

have,

∂Vc−p
∂τ

= (γ − 1)∂Vc−p
∂x

+ ∂αVc−p(x, τ)
∂xα

− γVc−p = 0
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with boundary conditions Vc−p(x, 0) = ex − K and γ = − 2r
σα

cos απ2 . Using the

same approach highlighted in our derivation of the Black-Scholes formula, we have

Vc−p(x, τ) = −Ke−γτ
∫ ∞
−∞

fα,0 (|k|) dk + ex
∫ ∞
−∞

exp
(
−τ − τ 1/αk

)
fα,0 (|k|) dk.

In the proof of Theorem 2.3, we have established that
∫ ∞
−∞

fα,0 (|k|) dk = 1.

Furthermore, upon realizing that the second integral is the Fourier transform of

fα,0 = F−1{e−|k|α}, we have:

ex
∫ ∞
−∞

exp
(
−τ − τ 1/αk

)
fα,0 (|k|) dk = ex−τ

∫ ∞
−∞

exp
(
−i
(
−iτ 1/α

)
k
)
fα,0 (|k|) dk

= ex−τ f̂α,0
(
−iτ 1/α

)
= ex−τ+[i(−iτ1/α)]α = ex.

Thus, we have,

Vc−p(x, τ) = ex −Ke−γτ .

And the theorem is proven.

In this paper, we have proposed the Black-Scholes formula to determines the price

of a European call option. To provide consistency of this paper, we will conclude this

chapter with the generalized analytic form of the Black-Scholes formula for European

call options by applying the previous theorem.

The Black-Scholes formula for European call options is provided as follows: for

log price of a European call option x and time τ = −1
2σ

α sec απ2 (T − t) satisfying

0 ≤ t ≤ T , the price of the European call option is analytically given as follows:

Vc(x, τ) = ex
∫ d1

−∞
exp

(
−τ − τ 1/αk

)
fα,0 (|k|) dk −Ke−γτ

∫ d1

−∞
fα,0 (|k|) dk

where d1 = x− logK − (1− γ)τ
τ 1/α and γ = − 2r

σα
cos απ2 and
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fα,0 (|k|) = 1
α
H1,1

2,2

|k| (1− 1
α
, 1
α

) (1
2 ,

1
2)

(0, 1) (1
2 ,

1
2)


when H1,1

2,2 is the Fox H-function defined in this section.

Remark: Note that by put-call parity, we have,

∫ ∞
−∞

exp
(
−τ − τ 1/αk

)
fα,0 (|k|) dk = 1.
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Chapter 3

Numerical Method

In this chapter, we will use the Finite Difference Method (FDM) to determine solu-

tions for the Black-Scholes Equation under the FMLS model. We will also propose

theorems that highlight the stability and the convergence of the method.

Let V (x, t) be the price of a European vanilla option with respect to log price

x and time t. Let r be the risk-free rate of interest, σ > 0 be the volatility, and

1 < α ≤ 2 be the fractional parameter. Recall that the Black-Scholes Equation is

given as follows:

∂V (x, t)
∂t

+
(
r + 1

2σ
α sec απ2

)
∂V (x, t)
∂x

− 1
2σ

α sec απ2
∂αV (x, t)
∂xα

= rV (x, t)

where,

∂αV (x, t)
∂xα

= 1
Γ(1− α)

d

dx

∫ x

−∞
V (u, t)(x− u)−αdu.

The boundary conditions are given as

V (x, T ) = Π(x) :=


max{ex −K, 0} for European call option

max{K − ex, 0} for European put option

where K is the strike price.

In Chapter 2, we have applied the following change of variables:

τ := −1
2σ

α sec απ2 (T − t).

This resulted in the following variant of the Black-Scholes Equation:
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∂V

∂τ
= (γ − 1)∂V

∂x
+ ∂αV (x, τ)

∂xα
− γV

with boundary conditions V (x, 0) = Π(x) for Π defined above and γ = − 2r
σα

cos απ2 .

Throughout this chapter, we will solve this variant since this will simplify conditions

for the finite difference method that will be specified in this chapter.

Note that the log price of the asset x satisfies −∞ < x <∞. To apply the finite

difference method, we truncate the interval and assume that for some constant ϕ > 0,

the log price x satisfies −ϕ < x < ϕ. The constant ϕ will depend on the maximum

price of the asset and can be readjusted appropriately.

3.1 Stability of Methods with Standard Grunwald Approximation

In this section, we develop a scheme using standard Grunwald weights to approximate

the derivative of fractional order and establish that by using this approximation, both

implicit and explicit Euler methods yield unstable results. [8]

Let h = 2ϕ
m

, xi = −ϕ+ ih for i = 0, · · · ,m, let τn = n∆τ where ∆τ represents the

incremental change of time in the interval 0 ≤ τ ≤ −1
2σ

α sec απ2 T for n = 0, · · · ,m,

and V n
i = V (xi, τn).

The discrete Grunwald approximation for the fractional derivative is given by the

formula:

∂αV (x, τ)
∂xα

= 1
Γ(−α) lim

m→∞

1
hα

t∑
k=0

Γ(k − α)
Γ(k + 1) V (x− kh, τ).

To simplify notation, let gk := Γ(k − α)
Γ(−α)Γ(k + 1) be the normalized Grunwald

weights. We analyze both forms of the Euler method to determine if the methods are

stable.

Theorem 3.1. The explicit Euler method of the Black-Scholes Eqauation under

FMLS model with the discrete Grunwald approximation to the fractional derivative is

unstable.
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Proof. Under the explicit Euler method, the Black-Scholes Equation reverts to the

following: for i = 1, · · · ,m− 1, and n = 1, · · · ,m− 1,

V n+1
i − V n

i

∆τ = −γV n
i + (γ − 1)V

n
i − V n

i−1
h

+ 1
hα

i∑
k=0

gkV
n
i−k

Solving for V n+1
i yields,

V n+1
i = µV n

i −
(
γ − 1
h

+ α

hα

)
∆τV n

i−1 + ∆τ
hα

i∑
k=2

gkV
n
i−k − γV n

i ∆τ

where µ = 1 + ∆τ
h

(γ − 1) + ∆t
hα

. Assume that the following numerical value only

have error, i.e. V̂ 0
i = V 0

i + ε0i for some ε0i > 0 dependent on i. This error produces a

perturbation on the numerical value of V̂ 1
i = V 1

i + ε1i . Then, we have

V̂ 1
i = µV̂ 0

i −
(
γ − 1
h

+ α

hα

)
∆τV n

i−1 + ∆τ
hα

i∑
k=2

gkV
n
i−k − γV n

i ∆τ

= µ(V 0
i + ε0i ) = V 1

i + µε0i

This implies that ε1i = µε0i . Recursively, we can deduce that εni = µnε0i . For the

explicit Euler method to be stable, we require the error to be sufficiently small. Thus,

µ must satisfy |µ| ≤ 1. Note that,

1 <
∣∣∣∣∣1 + ∆τ

h
(γ − 1) + ∆τ

hα

∣∣∣∣∣ = |µ|.

This implies that the explicit Euler method is unstable. The theorem is proven.

Theorem 3.2. The implicit Euler method of the Black-Scholes Eqauation under

FMLS model with the discrete Grunwald approximation to the fractional derivative is

unstable.

Proof. Under the implicit Euler method, the Black-Scholes Equation reverts to the

following: for i = 1, · · · ,m− 1 and n = 1, · · · ,m− 1,

V n+1
i − V n

i

∆τ = −γV n+1
i + (γ − 1)V

n+1
i − V n+1

i−1
h

+ 1
hα

i∑
k=0

gkV
n+1
i−k
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Solving for V n+1
i yields,

V n+1
i = νV n

i − ν
(
−γV n+1

i − γ − 1
h

V n+1
i−1 + 1

hα

i∑
k=0

gkV
n+1
i−k

)
∆τ

where ν =
(

1− ∆τ
h

(γ − 1)− ∆t
hα

)−1

. Again, assume that the following numerical

value only have error, i.e. V̂ 0
i = V 0

i + ε0i for some ε0i > 0 dependent on i. This error

produces a perturbation on the numerical value of V̂ 1
i = V 1

i + ε1i . Then, we have

V̂ 1
i = νV̂ 0

i − ν
(
−γV n+1

i − γ − 1
h

V n+1
i−1 + 1

hα

i∑
k=0

gkV
n+1
i−k

)
∆τ

= ν(V 0
i + ε0i ) = V 1

i + νε0i

This implies that ε1i = νε0i . Recursively, we can deduce that εni = νnε0i . For the

explicit Euler method to be stable, we require the error to be sufficiently small. Thus,

ν must satisfy |ν| ≤ 1. Note that,

1 <

∣∣∣∣∣∣
(

1− ∆τ
h

(γ − 1)− ∆t
hα

)−1
∣∣∣∣∣∣ = |ν|.

This implies that the implicit Euler method is unstable. The theorem is proven.

Therefore, both explicit and implicit Euler methods yield unstable results and the

discrete Grunwald approximation cannot be used to solve the Black-Scholes equation

under the FMLS model. In the next section, we will make a slight adjustment to the

Grunwald approximation of the fractional derivative that will allow the Euler method

to be consistent and unconditionally stable.

3.2 Stability of Methods with Shifted Grunwald Approximation

We will begin this section by defining the shifted Grunwald approximation of the frac-

tional derivative. With the same conditions as before, we define the shifted Grunwald

approximation as follows: for positive integer p,
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AhV (x, τ) = 1
Γ(−α)

1
hα

∞∑
k=0

Γ(k − α)
Γ(k + 1) V (x− (k − p)h, τ).

Furthermore, let AV (x, τ) = ∂αV (x, τ)
∂xα

be the standard Grunwald approximation

of the fractional derivative. We claim the following theorem:

Theorem 3.3. As h→ 0, AhV (x, τ) = AV (x, τ) +O(h).

Proof. Taking the Fourier transform of the definition of the shifted Grunwald approx-

imation, we have,

ˆAhV (k, τ) = 1
hα

∞∑
m=0

(−1)m
(
α

m

)
eik(m−p)hV̂ (k, τ)

= 1
hα
eikhp(1− eikh)αV̂ (k, τ)

= 1
hα

(−ikh)α
(

1− eikh
−ikh

)α
eikhpV̂ (k, τ)

= (−ik)αw(−ikh)V̂ (k, τ)

with w(z) = ezp
(

1− e−z
z

)α
= 1 −

(
p− α

2

)
z + O(|z|2). Since for all z, there

exists C > 0 such that |w(−iz)− 1| ≤ C|z|, we have,

ˆAhV (k, τ) = (−ik)αV̂ (k, τ) + (−ik)α(w(−ikh)− 1)V̂ (k, τ)

= ÂV (k, τ) + φ̂(h, k, τ)

when φ̂(h, k, τ) = (−ik)α(w(−ikh)− 1)V̂ (k, τ). This implies that

|φ̂(h, k, τ)| = |k|αC|hk||V̂ (k, τ)|

Applying Theorem D.2 implies that as h→ 0, AhV (x, τ) = AV (x, τ) +O(h).

Theorem 3.3 discusses how as h→ 0, the shifted Grunwald approximation behaves

similarly to the standard Grunwald approximation of the fractional derivative. This

enables us to consider finite difference methods using this altered approximation. We

will propose a theorem stating our observations.
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Theorem 3.4. Let 1 < α ≤ 2. Then the implicit Euler method of the Black-Scholes

Equation under FMLS model with the shifted Grunwald approximation, given as fol-

lows,

∂αV (x, τ)
∂xα

= 1
Γ(−α) lim

m→∞

1
hα

m∑
k=0

Γ(k − α)
Γ(k + 1) V (x− (k − 1)h, τ)

for h = 2ϕ
m

, to the fractional derivative is consistent and unconditionally stable.

Proof. Note that there exists log price C such that V (C, τ) = 0. Let −ϕ < C. The

initial condition V (−ϕ, τ) = 0 implies that for all x ≤ −ϕ, we have V (x, τ) = 0.

Theorem 3.3 implies that the truncation error of the shifted approximation is O(h).

This implies that the implicit method is consistent.

Using the above approximation, we have that for i = 1, · · · ,m − 1 and n =

1, · · · ,m− 1,

V n+1
i − V n

i

∆τ = −γV n+1
i + (γ − 1)V

n+1
i − V n+1

i−1
h

+ 1
hα

i∑
k=0

gkV
n+1
i−k+1

After re-expressing the above equality, this creates a system of linear equations,

which can be rewritten as the following matrix equation:

AV n+1 = V n + ∆tF n

where V n+1 =
[
V n+1

0 , V n+1
1 , V n+1

2 , ..., V n+1
h

]T
,

V n + ∆τF n = [0, (1− γ∆τ)V n
1 , (1− γ∆τ)V n

2 , ..., V (ϕ, τ)]T

and A = [Ai,j] is the coefficient matrix, given as follows:

Ai,j =



0 j ≥ i+ 2

−g0
∆τ
hα

j = i+ 1

1 + ∆τ
h
− g1

∆τ
hα

j = i

−∆τ
h
− g2

∆τ
hα

j = i− 1

−gi−j+1
∆τ
hα

j ≤ i− 1
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Let λ be the eigenvalue of matrix A, so that for some nonzero vector X, we have

AX = λX. Choose index i so that |xi| is maximized where xi represents the ith entry

in X for i = 0, ...,m. Therefore, we have
m∑
j=0

Ai,jxj = λxi, which implies,

λ = Ai,i +
m∑

j=0;j 6=i
Ai,j

xj
xi

.

Thus,

λ =


1 + ∆τ

h

(
1− xi−1

xi

)
− ∆τ

hα

[
g1 +∑i+1

j=0;j 6=1 gi−j+1

∣∣∣xj
xi

∣∣∣] i 6= {0,m}

1 i = {0,m}

Since
∣∣∣∣xjxi

∣∣∣∣ ≤ 1 and gj ≥ 0 for any j = 0, 2, ..., we have

i+1∑
j=0,j 6=i

gi−j+1

∣∣∣∣xjxi
∣∣∣∣ ≤ i+1∑

j=0,j 6=i
gi−j+1 ≤ −g1

and,

g1 +
i+1∑

j=0;j 6=1
gi−j+1

∣∣∣∣xjxi
∣∣∣∣ ≤ 0

This implies that all eigenvalues of A satisfy |λ| ≥ 1. A is an invertible matrix so

A−1 exists. The eigenvalues of A−1 satisfy |λ̃| ≤ 1 and therefore, the spectral radius

of A−1 satisfies ρ(A−1) ≤ 1. Note that the error vector ε0 of V 0 results in the error

vector ε1 of V 1, related by ε1 = A−1ε0. This implies that ||ε1|| ≤ ||ε0||. The method

is unconditionally stable and the theorem is proven.

In the next section, we will apply the Finite Difference Method using the shifted

Grunwald approximation of the fractional derivative. We will mimic the mathe-

matical contents presented in Meerschaert and Tadjeran for European vanilla option

pricing. [9]
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3.3 Standard Finite Difference Method

Let h = 2ϕ
m

, xi = −ϕ + ih for i = 0, · · · ,m, let τn = n∆τ where ∆τ represents the

incremental change of time in the interval 0 ≤ τ ≤ −1
2σ

α sec απ2 T for n = 0, · · · ,m,

and V n
i = V (xi, τn).

The shifted Grunwald approximation for the fractional derivative is given by the

formula:

∂αV (x, τ)
∂xα

= 1
Γ(−α) lim

m→∞

1
hα

m∑
k=0

Γ(k − α)
Γ(k + 1) V (x− (k − 1)h, τ).

Again, we will let gk := Γ(k − α)
Γ(−α)Γ(k + 1) be the normalized Grunwald weights. Let

s(x, τ) := (γ − 1)∂V
∂x
− γV be the source/sink term of the Black-Scholes Equation.

Under the interval −ϕ < x < ϕ, the finite difference method implies that

sni := s(xi, τn) = (γ − 1)V
n
i+1 − V n

i

h
− γV n

i +O(h).

Therefore, by using the shifted Grunwald approximation, we see that the Black-

Scholes Equation under the finite difference method is given as:

V n+1
i − V n

i

∆τ = 1
hα

i+1∑
k=0

gkV
n
i−k+1 + sni .

Solving for V n+1
i yields that for −ϕ < x < ϕ, we have

V n+1
i = ∆τ

hα
g0V

n
i+1 +

(
1 + ∆τ

hα
g1

)
V n
i + ∆τ

hα

i+1∑
k=2

gkV
n
i−k+1 + sni ∆τ

with h = 2ϕ
m

and sni defined above. For i = 1, · · · ,m − 1 and for each n =

1, · · · ,m− 1, the m− 1 equalities degenerate into a matrix equation given below:

V n+1
1

V n+1
2

V n+1
3
...

V n+1
m−1


=


I + ∆τ

hα



g1 g0 0 · · · 0

g2 g1 g0 · · · 0

g3 g2 g1 · · · 0
... ... ... . . . ...

gm−1 gm−2 gm−3 · · · g1







V n
1

V n
2

V n
3
...

V n
m−1


+ ∆τ
hα

V n
0



g2

g3

g4

...

gm


+ ∆τ ~sn
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with

~sn = 1
h



1− γ − hγ γ − 1 0 · · · 0

0 1− γ − hγ γ − 1 · · · 0

0 0 1− γ − hγ · · · 0
...

...
... . . . ...

0 0 0 · · · 1− γ − hγ





V n
1

V n
2

V n
3
...

V n
m−1


+ γ − 1

h
V n
m



0

0

0
...

1


Solving the above matrix equation using Gaussian Elimination requires a compu-

tational cost of O(m3) operations and a storage cost of O(m2) per time step. Note

that for all n = 0, · · · ,m,

V n
0 =


0 for European call option

Ke−γτ for European put option

and,

V n
m =


eϕ for European call option

0 for European put option

Also, note that for all i = 0, · · · ,m,

V 0
i =


max{exi −K, 0} for European call option

max{K − exi , 0} for European put option

In the next chapter, we will present an efficient finite difference method to solve

the Black-Scholes equation under FMLS model. We will attempt to reduce the stor-

age and computational cost of the method. In doing so, we must add a necessary

restriction to the initial conditions inconveniently not satisfied by the problem as

stated.
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Chapter 4

Fast Numerical Method

Under the standard finite difference method, recall that the price of a European

vanilla option V (x, τ) satisfies the following recursion: for −ϕ < x < ϕ, we have

V n+1
i = ∆τ

hα
g0V

n
i+1 +

(
1 + ∆τ

hα
g1

)
V n
i + ∆τ

hα

i+1∑
k=2

gkV
n
i−k+1 + sni ∆τ

with h = 2ϕ
m

and,

sni := s(xi, τn) = (γ − 1)V
n
i+1 − V n

i

h
− γV n

i +O(h).

The above recursion creates a system of equations which can be re-expressed as a

matrix equation. Under the standard finite difference method, the matrix equation

requires a storage of O(m2) and a computational cost of O(m3). In this section, we

propose a more efficient method by reducing the computational cost in the inversion

of the coefficient matrix. The result of this inversion method reduces the storage

cost from O(m2) to O(m) and reduces the computational cost to O(m logm) at each

iteration.

In this chapter, we will discuss about the limitations of the direct O(m log2m)

finite difference method and propose a fast locally conservative finite volume method

that similarly reduces the storage cost and computational cost of the standard finite

difference method. In using this method, we require to re-express our equation in a

conservative way.
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4.1 Limitations of Using Direct O(m log2m) Finite Difference Method

Let V (x, t) be the price of the European vanilla option with respect to log price x and

time t. Let r be the risk-free rate of interest, σ > 0 be the volatility, and 1 < α ≤ 2 be

the fractional parameter. Recall that after a change of variables, for −∞ < x < ∞,

the FMLS Fractional Black-Scholes Equation is given as follows:

∂V

∂τ
= (γ − 1)∂V

∂x
+ ∂αV (x, τ)

∂xα
− γV

with boundary conditions V (x, 0) = Π(x) for Π(x) representing the payoff function

for European vanilla options defined previously and γ = − 2r
σα

cos απ2 .

For a direct O(m log2m) finite difference method approach, we require the extreme

values of the log price to take equal values. [13] Note that for maturity τ and log price

x, the price of a European call option V (x, τ) under the FMLS model is monotonic.

Specifically, recall the analytic solution for European call options under the FMLS

model: for log price of a European call option x and time τ = −1
2σ

α sec απ2 (T − t)

satisfying 0 ≤ t ≤ T , the price of the European call option is analytically given as

follows:

Vc(x, τ) = ex
∫ d1

−∞
exp

(
−τ − τ 1/αk

)
fα,0 (|k|) dk −Ke−γτ

∫ d1

−∞
fα,0 (|k|) dk

where d1 = x− logK − (1− γ)τ
τ 1/α and γ = − 2r

σα
cos απ2 and

fα,0 (|k|) = 1
α
H1,1

2,2

|k| (1− 1
α
, 1
α

) (1
2 ,

1
2)

(0, 1) (1
2 ,

1
2)


when H1,1

2,2 is the Fox H-function.
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Taking the derivative with respect to x yields:

∂Vc
∂x

= ex exp
(
−τ − τ 1/αd1

)
fα,0(|d1|)

1
τ 1/α + ex

∫ d1

−∞
exp

(
−τ − τ 1/αk

)
fα,0 (|k|) dk

−Ke−γτfα,0(|d1|)
1
τ 1/α

= ex
∫ d1

−∞
exp

(
−τ − τ 1/αk

)
fα,0 (|k|) dk > 0.

By Theorem 2.4, we have,

∂Vc
∂x
− ∂Vp

∂x
= ex

Or,

∂Vp
∂x

= −ex
∫ ∞
d1

exp
(
−τ − τ 1/αk

)
fα,0 (|k|) dk < 0.

Therefore, we have shown that if V represents the price of a European call op-

tion, V (x, τ) is monotonically increasing with respect to log price x. Similarly, if V

represents the price of a European put option, V (x, τ) is monotonically decreasing

with respect to log price x.

However, it is not possible to truncate the tails so that there exist two endpoints

with equal values. If there exists L and R so that V (L, τ) = V (R, τ), by Rolle’s

Theorem, there exists a relative minimum or maximum in the interval L < x < R.

This is a contradiction since the European option value function is a monotonic

function.

A naive approach to circumvent this issue is to study the Taylor series represen-

tation of V (x, τ). This will require the Taylor series representation for Levy stable

density functions. In general, the Levy stable distribution can be expressed as the

real part of a simpler integral given below:

f(x;α, β, c, µ) = 1
π
Re

[∫ ∞
0

exp
(
it(x− µ)− (ct)α

(
1− iβ tan απ2

))]

By expressing exp
(
−(ct)α

(
1− iβ tan απ

2

))
as a Taylor series and reversing the

order of integration and summation yields,
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f(x;α, β, c, µ) = 1
π
Re

 ∞∑
n=1

(−q)n
n!

(
i

x− µ

)αn+1

Γ(αn+ 1)


which is valid for all x 6= µ where q := cα(1− iβ tan απ
2 ). Thus,

fα,0(x) = f(x;α, 0, 1, 0) = 1
π
Re

[ ∞∑
n=1

(−1)n
n!

(
i

x

)αn+1
Γ(αn+ 1)

]

Or,

fα,0(x) = 1
π

∞∑
n=1

(−1)nΓ(αn+ 1)
n! x−αn−1Re

[
iαn+1

]
.

Note that,

Re
[
iαn+1

]
= Re

[(
cos π2 + i sin π2

)αn+1
]

= cos
(
παn

2 + π

2

)
= − sin παn2 .

Thus,

fα,0(x) = 1
π

∞∑
n=1

(−1)n+1Γ(αn+ 1)
n! sin

(
παn

2

)
x−αn−1.

For general Levy stable density function, we have the following asymptotic:

f(x;α, β, c, µ) ∼ 1
π
cα(1 + sgn(x)β) sin πα2 Γ(α + 1)|x|−1−α.

Therefore,

fα,0(x) ∼ 1
π

sin πα2 Γ(α + 1)|x|−1−α.

However, in this naive approach, there are many limitations in the directO(m log2m)

method. In performing numerical experiments using the Taylor series representation

of the closed-form solution Vp(x, τ), we cannot express the integrals in terms of stan-

dard built-in functions. Due to the series conditional convergence, the question of

the accuracy of the numerical approximation also arises.

The low convergence rate at x → ∞ of the Levy density function fα,0(x) has

the added difficulty of computing semi-infinite integrals in our closed form using any
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numerical methods. Although the generalized Laguerre-Gauss quadrature efficiently

calculates integrals of this form, a naive truncation proposed in the Taylor series ex-

pansion, specifically the infinite series of the Grunwald-Letnikov fractional derivative,

yields a finite difference method that is unconditionally unstable. The infinite series

also does not accurately approximate put values for all x satisfying x < Ke(1−γ)τ

since the assumption of d1 > 0 is necessary to define the Taylor series expansion of

the Levy density function fα,0(x) for all 1 < α < 2.

To avoid these issues, we will alternatively use fast finite volume methods which

similarly use banded coefficient matrices to reduce the computational cost from O(m3)

to O(m logm) and storage cost from O(m2) to O(m). For the application of this

method, we relieve the restrictive boundary conditions of u(L, τ) = u(R, τ) = 0 and

re-express the Black-Scholes equation in a conservative way. This calls for a crucial

definition and some additional discussion. More information can be found in Cheng,

Wang, and Wang. [6]

4.2 Preliminaries for Fast Finite Volume Methods

Let α = 2− β for 0 < β < 1. The left and right Caputo fractional derivative of

order 1− β are respectively defined as follows:

aD
−β
x Dg(x) = 1

Γ(β)

∫ x

a
(x− s)β−1g′(s)ds

xD
−β
b Dg(x) = 1

Γ(β)

∫ b

x
(s− x)β−1g′(s)ds

Recall that after a change of variables, for −∞ < x < ∞, the FMLS Fractional

Black-Scholes Equation is given as follows:

∂V

∂τ
= (γ − 1)∂V

∂x
+ ∂αV (x, τ)

∂xα
− γV

with boundary conditions V (x, 0) = Π(x) for Π(x) representing the payoff function

for European vanilla options defined previously and γ = − 2r
σα

cos απ2 .
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Let V (x, τ) = exp(−γτ)u(x, τ). Then, we have the following:

∂V

∂τ
= exp(−γτ)∂u

∂τ
− γu exp(−γτ)

∂V

∂x
= exp(−γτ)∂u

∂x

Furthermore, we have,

∂αV

∂xα
:= Dα

xV (x, τ) =
∞∑
n=0

Γ(α + 1)Dα−n
x u(x, τ)Dn

x exp(−γτ)
Γ(α− n+ 1)n!

= Dα
xu(x, τ) exp(−γτ).

Details of this proof can be referred to Osler. [10] Our partial differential equation

becomes the following:

∂u

∂τ
= ∂αu

∂xα
+ (γ − 1)∂u

∂x

Or equivalently,

∂u

∂τ
− ∂

∂x

(
xD
−β
ϕ Du(x, τ)

)
= (γ − 1)∂u

∂x

The above variant of the Black-Scholes equation under the FMLS model is re-

expressed in a form renowned as divergence form. This is the required form

necessary to successfully apply the fast finite volume method. Unlike the direct

O(m log2m) finite difference method, we do not require u(−ϕ, τ) = u(ϕ, τ) = 0.

Continuing our construction for this method, let us define a temporal partition

on the interval 0 ≤ τ ≤ −1
2σ

α sec απ2 T by τn = n∆τ for n = 0, 1, ...,m with ∆τ =

−1
2σ

α sec απ2
T

m
. We will use the finite difference approximation of the time derivative

to re-express the partial differential equation at time τn as follows:

u(x, τn)− u(x, τn−1)
∆τ − ∂

∂x

(
xD
−β
ϕ u′(x, τn)

)
= f(x, τn)

where f(x, τn) := (γ − 1)∂u
∂x

(x, τn) represents the source/sink term. Equivalently,
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u(x, τn)−∆τ ∂
∂x

(
xD
−β
ϕ u′(x, τn)

)
= ∆τf(x, τn) + u(x, τn−1).

Next, define a uniform spatial partition on the truncated interval of the log price

[−ϕ, ϕ] by letting xi = ih for i = 0, 1, ...,m with h = 2ϕ
m

. Furthermore, define

xi− 1
2

= (xi−1 + xi)/2 for i = 1, ...,m to be the midpoint of the interval [xi−1, xi].

Then, by integrating the governing equation on (xi− 1
2
, xi+ 1

2
) for i = 1, ...,m yields the

following:
∫ x

i+ 1
2

x
i− 1

2

u(x, τn)dx−∆τ xD
−β
ϕ u′(x, τn)

∣∣∣xi+ 1
2

x
i− 1

2

= ∆τ
∫ x

i+ 1
2

x
i− 1

2

f(x, τn)dx+
∫ x

i+ 1
2

x
i− 1

2

u(x, τn−1)dx.

Let Sh(−ϕ, ϕ) denote the space of continuous and piecewise-linear functions with

respect to the spatial partition that vanishes at x = −ϕ and x = ϕ. Define the nodal

basis function φk(x) for k = 1, ...,m− 1 as follows:

φk(x) =



x− xk−1

h
x ∈ [xk−1, xk]

xk+1 − x
h

x ∈ [xk, xk+1]

0 elsewhere

Let unk := u(xk, τn). Then, uh(x, τn) ∈ Sh(−ϕ, ϕ) can be represented as:

uh(x, τn) =
m−1∑
k=1

unkφk(x).

Thus, for all i = 1, ...,m− 1, the finite volume scheme is formulated as:

m−1∑
j=1

unj

∫ x
i+ 1

2

x
i− 1

2

φj(x)dx−∆τ xD
−β
ϕ φ′j(x)

∣∣∣xi+ 1
2

x
i− 1

2


= ∆τ

∫ x
i+ 1

2

x
i− 1

2

f(x, τn)dx+
m−1∑
j=1

un−1
j

∫ x
i+ 1

2

x
i− 1

2

φj(x)dx.

Let fnk := f(xk, τn) and define the vectors un = [un1 , un2 , ..., unm−1]T and fn =

[fn1 , fn2 , ..., fnm−1]T be the vectors corresponding to the numerical approximation and

the source/sink terms at time step τn. Let M = [Mi,j]m−1
i,j=1 be the mass matrix and
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Bn = [Bn
i,j]m−1

i,j=1 be the stiffness matrix at time step τn. The entries of the matrices

M and Bn and vector fn are given as follows; for 1 ≤ i, j ≤ m− 1:

Mi,j =
∫ x

i+ 1
2

x
i− 1

2

φj(x)dx

Bn
i,j =

∫ x
i+ 1

2

x
i− 1

2

DxD
−β
ϕ Dφj(x)dx

fni =
∫ x

i+ 1
2

x
i− 1

2

f(x, τn)dx

We will shortly determine the entries for M and Bn. The entries of vector fn are

simplified as follows:

fni =
∫ x

i+ 1
2

x
i− 1

2

f(x, τn)dx = (γ − 1) u(x, τn)|
x
i+ 1

2
x
i− 1

2
= (γ − 1)

(
uni+ 1

2
− uni− 1

2

)
.

The finite volume scheme can be re-expressed in the following matrix equation:

(M −∆τBn)un = Mun−1 + ∆τfn

The mass matrix M takes the same form as its counterpart for the classical dif-

fusion equation. It is given as follows:

M = 1
8h



6 1 0 · · · 0 0

1 6 1 . . . . . . 0

0 1 6 . . . . . . ...
... . . . . . . . . . . . . 0

0 . . . . . . . . . 6 1

0 0 · · · 0 1 6


The difference between the finite volume scheme and the classical diffusion equa-

tion lies in the properties of stiffness matrix Bn. By observing the support of the

differential operators, we can conclude that the stiffness matrix is a full matrix which

requires a storage cost of O(m2) and a computational cost of O(m3). Many meth-

ods, including the finite volume method being discussed in this chapter, have been

proposed to effectively reduce these costs.
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Under algebraic manipulations, one can deduce that the entries of the stiffness

matrix can be rewritten as follows:

Bn
i,j = 1

Γ(β + 1)h1−β g
(β)
i−j

where g(β)
j is defined as follows:

g
(β)
j =



3
(
−j − 1

2

)β
− 3

(
−j + 1

2

)β
2−m ≤ j ≤ −2

3
(

1
2

)β
+
(

5
2

)β
− 3

(
3
2

)β
j = −1(

3
2

)β
− 3

(
1
2

)β
j = 0(

1
2

)β
j = 1

0 2 ≤ j ≤ m− 2

Alternatively, we can decompose the stiffness matrix as follows:

Bn = 1
Γ(β + 1)h1−βG

where,

G =



g
(β)
0 g

(β)
1 · · · g

(β)
m−3 g

(β)
m−2

g
(β)
−1 g

(β)
0 · · · g

(β)
m−4 g

(β)
m−3

... ... . . . ... ...

g
(β)
3−m g

(β)
4−m · · · g

(β)
0 g

(β)
1

g
(β)
2−m g

(β)
3−m · · · g

(β)
−1 g

(β)
0


Note that Bn does not depend on n. We will rename B := Bn to emphasize this

relationship between the stiffness matrix and the time step n. Our matrix equation

now becomes:

( 1
∆τ M −B

)
un = 1

∆τ Mun−1 + fn

Note that we can conveniently compute 1
∆τM as follows:
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1
∆τ M = 1

2
ϕ

σ2−βT
cos

(
πβ

2

)



6 1 0 · · · 0 0

1 6 1 . . . . . . 0

0 1 6 . . . . . . ...
... . . . . . . . . . . . . 0

0 . . . . . . . . . 6 1

0 0 · · · 0 1 6


Contrary to the standard requirement of O(m2) storage cost for any full matrix,

the matrix B requires O(m) storage.

4.3 Fast O(m logm) Algorithm for the Evaluation of Bu

In this section, we discuss a more efficient method of evaluating the matrix-vector

multiplication of the stiffness matrix B and some vector u. Firstly, define the following

matrix G̃ as follows:

G̃ =



0 g
(β)
2−m · · · g

(β)
−2 g

(β)
−1

g
(β)
m−2 0 · · · g

(β)
−3 g

(β)
−2

... ... . . . ... ...

g
(β)
2 g

(β)
3 · · · 0 g

(β)
2−m

g
(β)
1 g

(β)
2 · · · g

(β)
m−2 0


and define the following (2m− 2)× (2m− 2) circulant matrix as follows:

C2m−2 =

G G̃

G̃ G

.
The circulant matrix C2m−2 can be decomposed as follows

C2m−2 = F−1
2m−2diag(F2m−2c)F2m−2

where c represents the first column vector of C2m−2 and F2m−2 represents the

(2m− 2)× (2m− 2) discrete Fourier transform matrix with entries given by
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F2m−2(j, l) = 1√
2π

exp
(
− πijl

m− 1

)
0 ≤ j, l ≤ 2m− 3

Given this, we describe the procedures necessary to evaluate this matrix-vector

multiplication efficiently.

1. Rewrite u as u2m−2 = [uT , 0]T so that,

C2m−2v2m−2 =

Gu
G̃u


2. Similarly, evaluate the matrix-vector product w2m−2 = F2m−2u2m−2 inO(m logm)

operations by using fast Fourier transform. w2m−2 is the discrete Fourier trans-

form of u2m−2.

3. Now, we evaluate the matrix-vector product v2m−2 = F2m−2c2m−2 in O(m logm)

operations by using fast Fourier transform.

4. Next, evaluate the Hadamard product z2m−2 = w2m−2·v2m−2 = [w1v1, · · · , w2n−2v2n−2]T

in O(N) operations.

5. Lastly, evaluate y2m−2 = F−1
2m−2z2m−2 in O(m logm) operations using inverse

fast Fourier transform. This yields:

y2m−2 = C2m−2v2m−2 =

Gu
G̃u



6. Multiplying by the scalar 1
Γ(β + 1)h1−β to the vector y2m−2 in O(m) operations

yields Bu.

By the above procedures, it can be deduced that the computational cost of evalu-

ating Bu for stiffness matrix B and some vector u is O(m logm). This is a significant

improvement compared to the standard finite difference method’s computational cost

of O(m3) operations.
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4.4 Fast Conjugate Gradient Square Method with O(m) Storage

Since the stiffness matrix B is full, the direct method of computing the matrix-

vector multiplication requires O(m3) per time step. Given that we have deduced an

algorithm to efficiently calculate Bu, it motivates us to consider the conjugate gradi-

ent square method (CGS), a generalized method of the standard conjugate gradient

method. This will allow us to accelerate the performance of the finite volume scheme.

We avoid using the standard conjugate gradient method as this method does not

apply for nonsymmetric systems The residual vectors cannot be made orthogonal with

short recurrences. The pseudocode for CGS on the finite volume scheme discussed

throughout this chapter is provided below:

Algorithm 1 Conjugate Gradient Squared Method
1: procedure At each time step τn, choose u(0) = un−1 and compute r(0) =
fn − Anu(0). Choose r̃ (for example, r̃ = r(0))

2: for i = 1, 2, · · · do
3: ρi−1 = r̃T r(i−1)

4: if ρi−1 = 0, the method fails
5: if i = 1 then
6: w(1) = r(0)

7: p(1) = w(1)

8: else
9: βi−1 = ρi−1/ρi−2

10: w(i) = r(i−1) + βi−1q
(i−1)

11: p(i) = w(i) + βi−1(q(i−1) + βi−1p
(i−1))

12: v̂ = Anp(i)

13: αi = ρi−1/r̃
T v̂

14: q(i) = w(i) − αiq̂
15: u(i) = u(i−1) + αi(w(i) + q(i))
16: q̂ = An(w(i) + q(i))
17: r(i) = r(i−1) − αiq̂
18: δ = ||fn − Anu(i)||
19: check convergence; continue if necessary
20: un = u(i)

The above pseudocode requires O(m2) operations to compute the matrix-vector

multiplication. By the previous section, it has been shown that the computational
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cost can be reduced to O(m logm) operations. Applying the fast algorithm discussed

in Section 4.3 onto FCGS method yields a fast finite volume method that efficiently

computes the numerical values of the price of European vanilla options.
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Chapter 5

Numerical Experiments and Observations

In this chapter, we will carry out numerical experiments to investigate the perfor-

mance of Euler’s backward method for the finite volume scheme discussed in Chapter

4. We will also implement the Fast Conjugate Gradient Squared Method to acceler-

ate the performance of the finite volume scheme and to observe its reduction of the

CPU time. Lastly, we will simulate the Black-Scholes model under the FMLS process

for European puts with different choices of α to emphasize the effects of the return

distribution when compared to the underlying price.

5.1 Simulation of S&P 500 Options Market

Firstly, consider the one year time interval between September 15, 2014 to September

15, 2015. Using recently observed data from the S&P 500 options market in this time

interval, we note that Chicago Board Options Exchange Volatility Index (VIX), a

standard measure of implied volatility, consistently fluctuates between σ = 0.1088 and

σ = 0.4074. For the purposes of our numerical experiments, we will let σ = 0.1601822

represent the average daily VIX observed in this time frame. The data can be observed

and retrieved from YAHOO! Finance.

Since the 2007 financial crisis, the U.S. Federal Reserve have kept interest rates

between 0% and 0.25% in attempts to stabilize the U.S. economy and the financial

system. This consequentially creates unnecessary inflation on many European vanilla

options. Recent trends have suggest the U.S. Federal Reserve to consider raising

interest rates to reduce inflation. For the sake of our numerical experiments, we will
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Figure 5.1: European puts at different α values. Model parameters are K = $10,
r = 0.025, and τ = 1.

let r = 0.0025.

Lastly, we will assume that the maximum asset price is $150. This suggests that

we will truncate our log price interval to the following interval for both finite difference

scheme and the finite volume scheme: −5 < x < 5. For our numerical experiments,

we let ϕ = 5.

Under these realistic conditions, we are able to simulate the Black-Scholes equation

under the FMLS model for varying parameters α. Provided above depicts the overall

effect of European puts under different choices of α assuming that strike price K =

$10. In our simulation, we choose α = {1.25, 1.5, 1.75, 1.875, 1.95}. As expected,

as α → 2, the tail behavior of the return distribution becomes flat and the effect

of leptokurtosis diminishes. Under put-call parity, we should also expect a similar

behavior for prices of European call options.

We will also discuss the CPU time usage for the methods presented in this thesis.

Under the finite volume scheme (FV), we consider a spatial and temporal partition
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defined by the midpoints of consecutive nodes and solve the Black-Scholes equation

under FMLS under these points using Gaussian Elimination. Furthermore, we will

implement a Fast Conjugate Gradient Squared acceleration (FCGS) onto the finite

volume scheme to reduce the CPU time. The results are compiled in the following

table.

Table 5.1: CPU Time Usage of Numerical Methods.

m FV with GE FV with FCGS

29 0.094 s 0.016 s

210 0.4414 s 0.153 s

211 1.706 s 0.478 s

212 7.233 s 1.235 s

As noted in Table 5.1, it is expected that the finite volume scheme with Gaussian

elimination requires more CPU time to successfully determine the prices of European

vanilla options under any choice of α. Using various choices of m, we can observe

that the times increase significantly under this method. Recall that we require a

computational cost of O(m3) and a storage cost of O(m2) operations. This suggests

that the CPU time increases exponentially as we scale m as observed in the table

above.

When applying the Fast Conjugate Gradient Squared method, we successfully

reduced the computational cost to respectively O(m logm) operations per iterate.

Thus, we should expect that the CPU time reduces for all choices of m. Again, this

can be observed by the results compiled in the table above. Under this acceleration,

we reduce the storage cost from O(m2) to O(m). We should expect a reduction of

CPU time since the finite volume scheme under this method does not require much

storage. This again can be observed in the data presented in Table 5.1.
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We now turn to the accuracy of the numerical methods. We will compute the

relative error in the L2 and L∞ norm. Recall that L2 error is computed as:

ε2 =
(∑

i

|V − Vi|2
)1/2

And the L∞ error is computed as:

ε∞ = max
i
|V − Vi|

where V represents the actual price of the European vanilla option under fixed

α and Vi represents the numerical value evaluated at xi for T = 1. The results are

presented below:

Table 5.2: Accuracy of Numerical Methods

m ε2 for FV ε∞ for FV

29 1.0531× 10−3 3.1012× 10−3

210 5.4532× 10−4 1.5926× 10−3

211 2.739× 10−4 7.1038× 10−4

212 1.297× 10−4 3.2579× 10−4

As expected, we note that asm increases, ε2, ε∞ → 0, since we require finer tempo-

ral and spatial partitions in the simulation of the Black-Scholes pricing formula under

the FMLS process. Also, note that under the finite volume scheme, our simulation

may motivate more methods to efficiently compute the desired option prices given

parameter α since these errors are insignificant to the application of option pricing.

5.2 Concluding Remarks

In this thesis, we have successfully analyzed the behavior of the Black-Scholes model

under the FMLS process for varied choices of α, determined a closed-form solution
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to represent a variant of the Black-Scholes pricing formula in terms of α, and used

numerical methods to simulate the recent behavior of the S&P 500 options market in a

one-year time frame. We have also considered finite volume schemes to further reduce

the CPU time by decreasing the computational and storage costs of the standard

finite difference method, using banded coefficient matrices to efficiently compute the

solution of the system. Lastly, we performed an applicable simulation emphasizing

the efficiency of the finite volume method and have successfully achieved our desired

results.
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Appendix A

Diffusion Models and Random Walks

In this Appendix, we provide a mathematically justified proof of the diffusion equation

using applications in random walks. We will begin by proposing the Central Limit

Theorem. We will provide no proof of the Central Limit Theorem in this Appendix.

Theorem A.1. (Central Limit Theorem) Let X1, · · · , Xn be independent, identically

distributed random variables satisfying E(Xi) = m and V ar(Xi) = σ2 > 0. Let

Sn := X1 + · · ·+Xn. Then for a, b ∈ R, a < b,

lim
n→∞

P

(
a ≤ Sn − nm√

nσ
≤ b

)
= 1√

2π

∫ b

a
e−

x2
2 dx.

In our mathematical justification of the diffusion model, we require the following

theorem. We will provide a proof of the theorem.

Theorem A.2. (Laplace DeMoivre Theorem) Let X1, · · · , Xn be independent, iden-

tically distributed random variables satisfying,

P (Xi = 1) = p and P (Xi = 0) = q, where i ∈ {1, · · · , n}

for p, q ≥ 0 and p+ q = 1. Define Sn := X1 + · · ·Xn. Then for a, b ∈ R, a < b,

lim
n→∞

P

(
a ≤ Sn − np√

npq
≤ b

)
= 1√

2π

∫ b

a
e−

x2
2 dx.

Remark: One can easily compute that E(Sn) = np and V ar(Sn) = npq. The

Laplace-DeMoivre Theorem is a specific case of the Central Limit Theorem.
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Proof. Define S∗n := Sn − np√
npq

to be a random variable with value xk = k − np
√
npq

and

probability pn(k) =
(
n

k

)
pkqn−k. Then, for a < b,

P (a ≤ S∗n ≤ b) =
∑

a≤xk≤b
pn(k) =

∑
a≤xk≤b

(
n

k

)
pkqn−k =

∑
a≤xk≤b

n!
k!(n− k)!p

kqn−k.

By applying Stirling’s Formula, which states that as n→∞:

n! = e−nnn
√

2πn(1 + o(1))

we have that as n→∞,

P (a ≤ S∗n ≤ b) =
∑

a≤xk≤b

e−nnn
√

2πnpkqn−k

e−kkk
√

2πke−(n−k)(n− k)n−k
√

2π(n− k)
(1 + o(1))

=
∑

a≤xk≤b

1√
2π

√
n

k(n− k)

(
np

k

)k ( nq

n− k

)n−k
(1 + o(1)).

Now we propose the following lemma:

Lemma A.3. We have the following:

lim
n→∞; k−np√

npq
→x

(
np

k

)k ( nq

n− k

)n−k
= e−

x2
2

Proof. Let x = xk = k − np
√
npq

. Note that,

1 +
√
q

np
x = 1 +

√
q

np

(
k − np
√
npq

)
= k

np

and,

1 +
√
p

nq
x = 1 +

√
p

nq

(
k − np
√
npq

)
= n− k

nq
.

Given that as y → 0, we have log(1± y) = ±y − y2

2 +O(y3). Therefore, we have

log
(
np

k

)k
= −k log

(
k

np

)

= −k log
(

1 +
√
q

np
x

)

= −(np+ x
√
npq)

(√
q

np
x− q

2npx
2
)

+O
(
n−

1
2
)
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And similarly,

log
(

nq

n− k

)n−k
= −(n− k) log

(
n− k
nq

)

= −(n− k) log
(

1 +
√
p

nq
x

)

= −(nq − x√npq)
(
−
√
p

nq
x− p

2nqx
2
)

+O
(
n−

1
2
)

Adding the expressions and simplifying yields,

lim
n→∞; k−np√

npq
→x

log
(
np

k

)k ( nq

n− k

)n−k
= −x

2

2 .

This implies the statement of the lemma. The lemma is proven.

Again, let x = xk = k − np
√
npq

. Therefore k = np+x
√
npq and n−k = nq−x√npq.

Thus, √
n

k(n− k) = 1
√
npq

(1 + o(1)).

Continuing from our calculuations, as n→∞, we have:

P (a ≤ S∗n ≤ b) = 1√
2π

∑
a≤xk≤b

1
√
npq

e−
x2
2 (1 + o(1)).

Note that the right hand side is simply a Riemann sum approximation as n→∞

of the following integral:

P (a ≤ S∗n ≤ b) = 1
2π

∫ b

a
e−

x2
2 dx.

This completes the proof of the theorem.

We will now proceed to derive the traditional diffusion model using random walks.

Given spacing ∆x > 0 and time duration ∆t > 0, define the following two-dimensional

lattice:

{(m∆x, n∆t) | m ∈ Z, n ∈ N ∪ {0}}.
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Consider a particle in starting position x = 0 at t = 0. We allow the particle to

only move to the left and to the right. Let the probability of the particle moving left

an amount of ∆x be 1
2 . Therefore, the probability of the particle moving right ∆x

units is 1
2 .

Let p(m,n) be the probability of a particle at position m∆x and n∆t. Then, we

have,

p(m, 0) =


0 m 6= 0

1 m = 0

Furthermore, we have

p(m,n+ 1) = 1
2p(m− 1, n) + 1

2p(m+ 1, n)

and equivalently,

p(m,n+ 1)− p(m,n) = 1
2[p(m− 1, n)− 2p(m,n) + p(m− 1, n)]

Assume that (∆x)2

∆t = σ2 > 0. Then we have,

p(m,n+ 1)− p(m,n)
∆t = σ2

2
p(m− 1, n)− 2p(m,n) + p(m− 1, n)

(∆x)2

Letting ∆t→ 0, ∆x→ 0, m∆x→ x, and n∆t→ t, we see that p(m,n)→ u(x, t)

where u(x, t) is the probability density function of a particle at position x and time

t. We also see that by passing limits, the difference equation becomes the traditional

diffusion model, i.e.

∂u(x, t)
∂t

= σ2

2
∂2u(x, t)
∂x2 .

Now we will solve the traditional diffusion model by using another interpretation

of random walks. Again, consider the particle with the same conditions previously

mentioned. Let X(t) be the position of the particle at time t = n∆t, and define
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Sn :=
n∑
i=1

Xi where Xi are independent random variables satisfying P (Xi = 0) = 1
2

and P (Xi = 1) = 1
2 . Note that V ar(Xi) = 1

4 .

Sn is a random walk that determines the number of moves to the right at time

t = n∆t. Therefore we have,

X(t) = Sn∆x+ (n− Sn)(−∆x) = (2Sn − n)∆x.

Note that,

V ar(X(t)) = (∆x)2V ar[(2Sn − n)]

= 4(∆x)2V ar[Sn] = 4n(∆x)2V ar[Xi]

= n(∆x)2 = (∆x)2

∆t t = σ2t.

Continuing from our calculations, we have

X(t) = (2Sn − n)∆x =
Sn − n

2√
n
4

√n∆x =
Sn − n

2√
n
4

√σ2t.

Applying Theorem A.2 yields the following result:

lim
n→∞

P (a ≤ X(t) ≤ b) = lim
n→∞

 a√
σ2t
≤
Sn − n

2√
n
4

≤ b√
σ2t


= 1√

2π

∫ b√
σ2t
a√
σ2t

e−
x2
2 dx

= 1√
2πσ2t

∫ b

a
e−

x2
2σ2tdx.

This implies that the probability density function u(x, t) satisfies

u(x, t) = 1√
2πσ2t

exp
(
− x2

2σ2t

)
.

The above solution also solves the traditional diffusion model.
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Appendix B

Stochastic Calculus

We will begin Appendix B with a few necessary definitions that play a crucial role in

the derivation of the Black-Scholes model.

Definition B.1. A real-valued stochastic process W (·) defined on some probability

space (Ω,U , P ), is called Brownian motion (or Wiener process) if W (·) satisfies

the following conditions:

• W (0) = 0 almost surely,

• W (t)−W (s) is N(0, t− s) for all t ≥ s ≥ 0,

• for all times 0 < t1 < t2 < . . . < tn, the random variables W (t1),W (t2) −

W (t1), . . . ,W (tn)−W (tn−1) are independent.

The stochastic process W is imperative in reflecting how stock option market

pricing behaves under the most simple conditions; namely, it attributes to the behav-

ior’s resemblance of a random walk which inspires the construction of the traditional

diffusion model. We will derive the diffusion model later in this section.

Definition B.2. Let W be a Wiener process. For times 0 ≤ t ≤ T , we define Ito’s

Integral to be the following:∫ T

0
WdW := W 2(T )

2 − T

2 .

We will assume that all stochastic integrals, including the Ito’s Integral, exists and

are well defined throughout this paper. More details on the existence of stochastic

integrals can be referred to Evans. [?Evans13] We propose the following definition:
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Definition B.3. Let X(·) be a real-valued stochastic process satisfying

X(r) = X(s) +
∫ r

s
µdt+

∫ r

s
σdW

where µ and σ are real-valued progressively measurable processes satisfying

E
(∫ T

0
|µ|dt

)
<∞ and E

(∫ T

0
σ2dt

)
<∞

and s and r are times satisfying 0 ≤ s ≤ r ≤ T . Then for 0 ≤ t ≤ T , we say that

X(·) an Ito process with stochastic differential dX = µdt + σdW for drift µ

and volatility σ.

We will begin this section by proposing Ito’s Chain Rule.

Theorem B.1. (Ito’s Chain Rule) Let f(x, t) be a smooth function and let X(t) be

an Ito process with stochastic differential dX = µdt+ σdW . Then Y (t) := f(X(t), t)

is also an Ito process with stochastic differential:

dY = ∂f

∂t
dt+ ∂f

∂x
dX + 1

2
∂2f

∂x2σ
2dt

Or equivalently,

dY =
(
∂f

∂t
+ µ

∂f

∂x
+ 1

2σ
2∂

2f

∂x2

)
dt+ σ

∂f

∂x
dW .

Ito’s Chain Rule plays a crucial role in the stochastic derivation of the Black-

Scholes Equation. In order to prove Theorem B.1, we need to propose and prove Ito’s

Product Rule.

Theorem B.2. (Ito’s Product Rule) Let X1(t) and X2(t) be Ito processes satisfying

dX1 = µ1dt + σ1dW and dX2 = µ2dt + σ2dW . Suppose that µ1, µ2, σ1, and σ2 are

real-valued progressively measureable processes satisfying,

E
(∫ T

0
|µ1|dt

)
, E

(∫ T

0
|µ2|dt

)
<∞ and E

(∫ T

0
σ2

1dt

)
, E

(∫ T

0
σ2

2dt

)
<∞
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for 0 ≤ t ≤ T . Then, X1X2(t) is an Ito process satisfying

d(X1X2) = X2dX1 +X1dX2 + σ1σ2dt.

Remark: Note that the integrated version of Ito’s product rule yields Ito integration-

by-parts formula:

∫ r

s
X2dX1 = X1(r)X2(r)−X1(s)X2(s)−

∫ r

s
X1dX2 −

∫ r

s
σ1σ2dt.

Proof. Choose 0 ≤ r ≤ T . Let F(t) := U(W (s), X0) be the σ−algebra generated

by X0 and W (s) for 0 ≤ s ≤ t, where X0 is a random variable independent of the

future of Brownian motion beyond time t = 0. Firstly, assume for simplicity that

X1(0) = X2(0) = 0, µ1(t) = µ1, µ2(t) = µ2, σ1(t) = σ1, and σ2(t) = σ2, where

µ1, µ2, σ1, and σ2 are time independent, F(0)−measurable random variables. Then

for t ≥ 0, we have X1(t) = µ1t+ σ1W (t) and X2(t) = µ2t+ σ2W (t).

Thus,

∫ r

0
X2dX1 +X1dX2 + σ1σ2dt =

∫ r

0
X1µ2 +X2µ1dt+

∫ r

0
X1σ2 +X2σ1dW +

∫ r

0
σ1σ2dt

=
∫ r

0
(µ1t+ σ1W )µ2 + (µ2t+ σ2W )µ1dt

+
∫ r

0
(µ1t+ σ1W )σ2 + (µ2t+ σ2W )σ1dW +

∫ r

0
σ1σ2dt

= µ1µ2r
2 + (σ1µ2 + σ2µ1)

(∫ r

0
Wdt+

∫ r

0
tdW

)
+ 2σ1σ2

∫ r

0
WdW + σ1σ2r.

By Definition B.2, we have 2
∫ r

0
WdW = W 2(r) − r. We propose and prove the

following lemma:

Lemma B.3. For r ≥ 0,
∫ r

0
tdW +

∫ r

0
Wdt = rW (r).

Proof. Let P n = {0 = tn0 < tn1 < · · · < tnmn = r} be a sequence of partitions of the

interval [0, r] with |P n| → 0 as n → ∞. Therefore, by definition of the stochastic

integral using Riemann sum approximation, we have:
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∫ r

0
tdW = lim

n→∞

mn−1∑
k=0

tnk(W (tnk+1)−W (tnk)).

Similarly, since t 7→ W (t) is continuous almost surely, we have,
∫ r

0
Wdt = lim

n→∞

mn−1∑
k=0

W (tnk+1)(tnk+1 − tnk).

Therefore, we have,

∫ r

0
tdW +

∫ r

0
Wdt = lim

n→∞

mn−1∑
k=0

tnk(W (tnk+1)−W (tnk)) +W (tnk+1)(tnk+1 − tnk)

= lim
n→∞

mn−1∑
k=0

tnk+1W (tnk+1)− tnkW (tnk)

= lim
n→∞

tnmnW (tnmn)− tn0W (tn0 )

= rW (r)

With these identities, we have

∫ r

0
X2dX1 +X1dX2 + σ1σ2dt = µ1µ2r

2 + (σ1µ2 + σ2µ1)rW (r) + σ1σ2W
2(r)

= X1(r)X2(r)

which is equivalent to the Ito integration-by-parts formula for the specific case

of s = 0, X1(0) = X2(0) = 0, and µ1, µ2, σ1 and σ2 are time-independent random

variables. A similar proof can be extended for the case of s ≥ 0, X1(s) and X2(s)

are arbitrary, and µ1, µ2, σ1 and σ2 are constant F(s)-measurable random variables.

Ito’s Product Rule holds for constant random variables.

Suppose that µ1, µ2, σ1, and σ2 are step processes. For each subinterval [tk, tk+1)

for which µ1, µ2, σ1, and σ2 are constant random variables, we can apply the previous

steps and add the resulting integrals. Ito’s Product Rule holds for step processes.

Now suppose that µ1, µ2, σ1, and σ2 are general processes. We can select a sequence

of step processes µn1 , µn2 , σn1 , and σn2 such that
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E

(∫ T

0
|µn1 − µ1|dt

)
→ 0 and E

(∫ T

0
|µn2 − µ2|dt

)
→ 0

and

E

(∫ T

0
(σn1 − σ1)2dt

)
→ 0 and E

(∫ T

0
(σn2 − σ2)2dt

)
→ 0

holds. Define

Xn
1 (t) := X1(0) +

∫ t

0
µn1ds+

∫ t

0
σn1 dW

Xn
2 (t) := X2(0) +

∫ t

0
µn2ds+

∫ t

0
σn2 dW

Note that Xn
1 and Xn

2 have stochastic differentials dXn
1 = µn1dt + σn1 dW and

dXn
2 = µn2dt+σn2 dW . Since Xn

1 and Xn
2 are step processes, Ito’s product rule applies.

This yields d(Xn
1X

n
2 ) = Xn

2 dX
n
1 + Xn

1 dX
n
2 + σn1σ

n
2 dt. Letting n → ∞ yields the

statement of the theorem.

Proof. Let X be an Ito process with stochastic differential dX = µdt+σdW . Firstly,

consider the case f(x, t) = xm for m ∈ N. We claim that

d(Xm) = mXm−1dX + 1
2m(m− 1)Xm−2σ2dt

and prove the claim with induction on m. Letting m = 0, 1 yields trivial cases

and for m = 2, we have d(X2) = 2XdX + σ2dt. This ie equivalent to the statement

of Theorem 1.2 for X1 = X2 = X. Let us assume that

d(Xm−1) = (m− 1)Xm−2dX + 1
2(m− 1)(m− 2)Xm−3σ2dt

= (m− 1)Xm−2(µdt+ σdW ) + 1
2(m− 1)(m− 2)Xm−3σ2dt.
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Then, using Theorem B.2, we have

d(Xm) = d(XXm−1)

= Xd(Xm−1) +Xm−1dX + (m− 1)Xm−2σ2dt

= X
(

(m− 1)Xm−2dX + 1
2(m− 1)(m− 2)Xm−3σ2dt

)
+Xm−1dX + (m− 1)Xm−2σ2dt

= mXm−1dX + 1
2m(m− 1)Xm−2σ2dt

The induction is complete. We can generalize the above case for all polynomials

f(x, t) in the variable x, because the stochastic differential operator is linear. Ito’s

Chain Rule is therefore proven for all polynomials f(x, t) in the variable x.

Now suppose that f(x, t) = f1(x)f2(t) for polynomials f1 and f2. Then,

d(f(X, t)) = d(f1(X)f2)

= f1(X)df2 + f2df1(X)

= f1(X)f ′2dt+ f2

(
f ′1(X)dX + 1

2f
′′
1 (X)σ2dt

)
= ∂f

∂t
dt+ ∂f

∂x
dX + 1

2
∂2f

∂x2σ
2dt

By the above calculations, Ito’s Chain Rule applies for polynomials of the form

f(x, t) = f1(x)f2(t). This can be generalized for all polynomial functions f of the

variables t and x since any f can be re-expressed as a linear combination of functions

of the form f(x, t) = f1(x)f2(t) and the stochastic differential operator is linear.

Now let f(x, t) be a smooth function. There exists a sequence of polynomials fn

such that fn → f , ∂f
n

∂t
→ ∂f

∂t
, ∂f

n

∂x
→ ∂f

∂x
, and ∂2fn

∂x2 →
∂2f

∂x2 . By applying the

previous steps, we can deduce that for all 0 ≤ s ≤ T ,

fn(s,X(s))− fn(0, X(0)) =
∫ s

0

∂fn

∂t
+ ∂fn

∂x
µ+ 1

2
∂2fn

∂x2 σ
2dt+

∫ s

0

∂fn

∂x
σdW a.s.;

Letting n→∞ yields Ito’s Chain Rule for all smooth functions f(x, t).
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Appendix C

Black-Scholes Formula

In this Appendix, we will transform the Black-Scholes equation into the traditional

diffusion equation by making specific substitutions. We have determined the solution

of the diffusion equation in Appendix A. Finally, we will use this solution to derive

the Black-Scholes Formula mentioned in Chapter 1.

Let C(S, t) be the price of a European call option with asset price S and time t.

Recall that the Black-Scholes model satisfies the following differential equation:

∂C

∂t
+ rS

∂C

∂S
+ 1

2σ
2S2∂

2C

∂S2 = rC.

and boundary conditions that for 0 ≤ t ≤ T and 0 < S <∞, we have C(S, t) ∼ S

as S →∞, and C(S, T ) = max{S −K, 0} for strike price K.

Firstly, let S = Kex, t = T − 2
σ2 τ , and C(S, t) = Kv(x, t). Then, we have

x = log(S/K) and τ = 1
2σ

2(T − t).

Equivalently, we have dτ = −1
2σ

2dt and ∂

∂S
= ∂x

∂S

∂

∂x
= 1
S

∂

∂x
. Thus,

∂2

∂S2 = ∂

∂S

∂

∂S
= ∂

∂S

(
1
S

∂

∂x

)
= − 1

S2
∂

∂x
+ 1
S

∂

∂S

(
∂

∂x

)
= − 1

S2
∂

∂x
+ 1
S2

∂2

∂x2 .

Making the above substitutions to the Black-Scholes equation yields,

−1
2σ

2 ∂v

∂τ
+ rS

[
1
S

∂v

∂x

]
+ 1

2σ
2S2

[
− 1
S2

∂v

∂x
+ 1
S2

∂2v

∂x2

]
= rv.

Or equivalently,

∂v

∂τ
+ ∂v

∂x
− ∂2v

∂x2 −
2r
σ2
∂v

∂x
+ 2r
σ2v = 0.
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Redefining k := 2r
σ2 and rearranging yields,

∂v

∂τ
= ∂2v

∂x2 + (k − 1)∂v
∂x
− kv.

Under these transformations, the boundary condition of C(S, T ) = max{S−K, 0}

for strike price K becomes v(x, 0) = max{ex − 1, 0}.

We now make the following substitution to further transform the above differential

equation into a diffusion equation. Let v(x, τ) = γu(x, τ) where γ(x, τ) = exp(αx +

βτ). Then, we have the following:

∂v

∂τ
= βγ(x, τ)u+ γ(x, τ)∂u

∂τ
∂v

∂x
= αγ(x, τ)u+ γ(x, τ)∂u

∂x
∂2v

∂x2 = α2γ(x, τ)u+ 2αγ(x, τ)∂u
∂x

+ γ(x, τ)∂
2u

∂x2

Making this substitution to the above differential equation and dividing both sides

by γ(x, τ) yields,

βu+ ∂u

∂τ
= α2u+ 2α∂u

∂x
+ ∂2u

∂x2 + (k − 1)
(
αu+ ∂u

∂x

)
− ku.

Equivalently, we have,

∂u

∂τ
= (−β + α2 + α(k − 1)− k)u+ (2α + k − 1)∂u

∂x
+ ∂2u

∂x2 .

We require that α = 1
2(1 − k) and β = −1

4(1 + k)2 to force the above partial

differential equation to become a diffusion model. With these choices of parameters,

we have,

∂u

∂τ
= ∂2u

∂x2

with u0(x) := u(x, 0) = max
{

exp
(

1
2(k + 1)x

)
− exp

(
1
2(k − 1)x

)
, 0
}
.

The diffusion equation that we have derived in the paper and Appendix A all have

boundary conditions independent of x. We generalize the solution of the diffusion

equation by applying the following definition:
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Definition C.1. Let u(x, t) satisfy the following diffusion model:

∂u

∂τ
= k

∂2u

∂x2 .

for some constant k and boundary condition u(x, 0) = g(x). Then, Green’s

function for the diffusion model is given as follows:

u(x, t) = 1√
4πkt

∫ ∞
−∞

exp
(
−(x− y)2

4kt

)
g(y)dy.

Applying Definition C.1 for k = 1 and the change of variables y 7→ x+
√

2τy, we

see that

u(x, τ) = 1√
2π

∫ ∞
−∞

u0(x+
√

2τy) exp
(
−y

2

2

)
dy.

Reverting the solution to the original variables yields the desired Black-Scholes

formula given as follows:

C(S, t) = SN(d1)−Ke−r(T−t)N(d2)

where,

N(x) := 1√
2π

∫ x

−∞
exp

(
−1

2s
2
)
ds

And,

d1 =
log(S/K) + (r + 1

2σ
2)(T − t)

σ
√
T − t

d2 =
log(S/K) + (r − 1

2σ
2)(T − t)

σ
√
T − t

= d1 − σ
√
T − t

More details can be referred to Dewynne, Howison, and Wilmott. [?Dewynne95]
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Appendix D

Fourier Transforms of Diffusion Models

We will begin this Appendix by providing the statement of the Levy Continuity

Theorem:

Theorem D.1. (Levy Continuity Theorem) Let {Xn}∞n=1 be a sequence of random

variables with characteristic functions ϕn. If ϕn → ϕ converges point-wise, the fol-

lowing statements are equivalent,

• Xn converges in distribution to some X

• {Xn}∞n=1 is tight, i.e. lim
x→∞

(
sup
n

P[|Xn| > x]
)

= 0

• ϕ is a characteristic function of some random variable X

• ϕ is a continuous function

• ϕ is continuous in some neighborhood of 0.

A proof of the theorem can be referred to Fristedt and Gray.

We will provide the mathematical details of the inversion of Fourier transforms

to yield their respective diffusion models. We will make use of the Fourier Inversion

Theorem mentioned below:

Theorem D.2. (Fourier Inversion Theorem) If
∫
|f(x)|dx < ∞, then the Fourier

transform f̂(k) exists. If |f̂(k)|dk <∞, then for all x ∈ R,

f(x) = 1
2π

∫
eikxf̂(k)dk.
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We will not prove this theorem in this paper. Recall that in this paper, we have

derived the following differential equation:

dû(k, t)
dt

= (ik)αû(k, t).

Applying Theorem D.2 on both sides yields,

1
2π

∫
eikx

∂

∂t
û(k, t)dk = 1

2π

∫
eikx(ik)αû(k, t)dk

Example 1.1 and Theorem D.2 combined implies that,

1
2π

∫
eikx(ik)αû(k, t)dk = ∂α

∂xα
u(x, t).

Since,

∂

∂t

1
2π

∫
eikxû(k, t)dk = ∂

∂t
u(x, t),

it suffices to show that for all fixed t > 0, the following holds,

∫
eikx

∂

∂t
û(k, t)dk = ∂

∂t

∫
eikxû(k, t)dk.

for the Fourier transform û(k, t) = et(ik)α of a stable density. Note that,

∂

∂t

∫
eikxû(k, t)dk = lim

h→0

∫
eikx

û(k, t+ h)− û(k, t)
h

dk

and, ∣∣∣∣∣ û(k, t+ h)− û(k, t)
h

∣∣∣∣∣ =
∣∣∣et(ik)α

∣∣∣ ∣∣∣∣∣1− eh(ik)α

h(ik)α

∣∣∣∣∣ |(ik)α|.

Note that we have,

(ik)α = (isgn(k)|k|)α = |k|α exp
(
isgn(k)πα2

)
= |k|α

(
cos πα2 + isgn(k) sin πα2

)

Thus,

∣∣∣et(ik)α
∣∣∣ = eRe(t(ik)α) = et|k|

α cos πα2
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and, |(ik)α| = |k|α. Furthermore, note that by Taylor expansion, we have,

∣∣∣∣1− ezz

∣∣∣∣ ≤ 1 + |z|2! + |z|
2

3! + · · · = e|z| − 1
|z|

.

For fixed t > 0 and z = h(ik)α such that |h| < − t2

(
cos πα2

)
, by the mean value

theorem,

e|h||k|
α − 1 ≤ |h||k|α exp

(
−|k|α t2 cos πα2

)
.

Thus, ∣∣∣∣∣1− eh(ik)α

h(ik)α

∣∣∣∣∣ ≤ e|h||k|
α − 1

|h||k|α
≤ exp

(
−|k|α t2 cos πα2

)
.

Combining the three terms yields,∣∣∣∣∣ û(k, t+ h)− û(k, t)
h

∣∣∣∣∣ ≤ |k|α exp
(
|k|α t2 cos πα2

)
.

Note that for any t > 0, the function |k|α exp
(
|k|α t2 cos πα2

)
is integrable with

respect to k. A variation of the Dominated Convergence Theorem is given as follows.

We will not provide proof of the theorem.

Theorem D.3. (Dominated Convergence Theorem) Let fn(x) be a sequence of func-

tions satisfying fn(x)→ f(x) as n→∞. If fn(x) ≤ g(x) for all x and n, and if g(x)

is integrable, then
∫
fn(x)dx→

∫
f(x)dx and the integrals exists.

Applying Theorem D.3 yields the following:

∂

∂t

∫
eikxû(k, t)dk =

∫
eikx lim

h→0

û(k, t+ h)− û(k, t)
h

dk =
∫
eikx

∂

∂t
û(k, t)dk.

This argument holds for all α contained in the interval 1 < α ≤ 2. Applying this

argument for α = 2 yields the second-order partial derivative case.
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